bernal双层石墨烯宿主甚至是分母的分数量子霍尔状态,被认为是由具有非亚伯式粒子激发的pfaffian波函数描述的。在这里,我们报告了使用热激活的转运和直接测量化学势的双层石墨烯中分数量子霍尔能隙的定量确定。我们发现传输激活差距为5。在B = 12 t时为1 k,在半填充的n = 1 Landau水平上,与PFAFFIAN状态的密度基质重新归一化组计算一致。但是,测得的热力学间隙为11。6 K小于对清洁限制的理论期望,大约是两个因子。我们分析了具有长波长障碍的分数准颗粒的wigner晶体的分数填充物附近的化学潜在数据,从而解释了这种差异。我们的结果定量地建立双层石墨烯是一个可靠的平台,用于探测预期出现的非亚洲人作为偶数派纳分子状态的基本激发。
在渐近高密度下的夸克物质是由于量子染色体动力学的渐近自由而弱耦合。在这种弱耦合方向中,假设基态的块状夸克物质的块状热力学特性目前已知是部分临近到邻接到领先的阶。然而,高密度处的基态有望是一种颜色超导体,其中(至少某些)夸克的激发光谱表现出缝隙,并且对强耦合的依赖性依赖性。在这项工作中,我们计算出高密度夸克物质的热力学特性,在存在有限间隙的情况下,在耦合中,在近代领先顺序(NLO)下的温度为零。我们以两种无质量夸克风味的极限工作,这对应于对称的对称核物质,并进一步假设与夸克化学势相比,间隙很小。在这些限制中,我们发现对声音的压力和速度的NLO校正与间隙的前阶效应相当,并且进一步将两个量的数量提高到了其值以上,而不是超导夸克物质。我们还提供了声音的NLO速度的参数化,以指导高密度区域的现象学,然后我们对是否应该期望我们的发现是否扩展到与中子星相关的三质量夸克事物的情况。
在渐近高密度下的夸克物质是微弱耦合的。在这种弱偶联方向上,假设夸克物质的大量热力学特性(假设基态,则众所周知,众所周知,部分接下来是下一步到隔壁到领先的顺序。然而,高密度的基态有望是一种颜色超导体,其中(至少某些)夸克的激发光谱显示出具有对强耦合的非扰动依赖性的缝隙。在这项工作中,我们计算高密度夸克物质的热态性能,而在有限间隙的情况下,在耦合中,在近代领先顺序(NLO)下的温度为零。我们以两种无质量夸克风味的极限工作,这对应于对称的对称核物质,并进一步假设与夸克化学势相比,间隙很小。在这些限制中,我们发现对声音压力和速度的NLO校正与间隙的前阶效应相当,并且进一步将两个量的数量提高到其值以上,而对于非驱动夸克物质的值。我们还提供了声音NLO速度的参数化,以指导高密度区域中的现象 - 我们进一步评论是否应期望我们的发现是否扩展到与中子恒星相关的三味夸克事物的情况。
摘要:我们考虑了通货膨胀背景中的Bardeen-Cooper-Schrieffer(BCS)类似模型。我们表明,凭借轴向化学势,有吸引力的四分之一的效率自我相互作用会导致BCS样冷凝。在通货膨胀的刚性保姆(DS)限制中,从而忽略了来自加速器和重力的反应,我们进行了第一次计算非扰动有效潜力的第一次计算,该计算包括在具有化学电位的情况下进行全空间曲率效应,这取决于均衡的有效性,其有效性已通过Ginzburg creterion进行了检查。当变化的哈勃被解释为DS时空的有效长臂猿温度时,相应的BCS相变始终是一阶。在凝结的阶段,该理论可以分别从紫外线和红外侧理解为费米子和骨气。这导致了曲率扰动的原始非高斯性非高斯性的独特特征。也就是说,振荡性宇宙对撞机信号以有限的动量比平稳关闭,因为不同的动量比有效地探测了不同的能量尺度。此外,此类BCS相跃迁还可以采购随机重力波,这对于将来的实验是可行的。
摘要:乳腺癌是全球最常见、最致命的癌症类型。鹰嘴豆素A是一种天然异黄酮,具有多种生物学和药理学特性。本研究利用密度函数理论(DFT)的量子化学研究探索鹰嘴豆素A的结构特征,并通过分子对接模拟揭示其抑制乳腺癌的特性。首先使用DFT/B3LYP方法以6-311++(d,p)基组对先导分子进行优化。进行模拟静电势以评估先导分子的反应性,并通过基于能隙、化学势(μ)、电负性(χ)、硬度(η)和软度(S)值的HOMO-LUMO分析评估分子反应性和稳定性。进行Mulliken原子电荷分布以确定分子的反应位点,并进行自然布居分析以计算电子分布。随后通过分子对接研究评估鹰嘴豆素A与乳腺癌靶蛋白的相互作用,并通过药代动力学评价评价先导分子的类药性,结果表明该先导分子没有违反Lipinski规则,对HER-2(PDB ID:2IOK)具有最高的结合亲和力,对接评分为-9.2Kcal/mol。
在二维ISING型nematic量子临界点附近,列级参数的量子波动与电子耦合,从而导致非Fermi液体行为和非常规的超导性。这两个效应之间的相互作用已通过Eliashberg方程进行了广泛的研究,以实现超导间隙。但是,以前的研究通常依赖于可能在结果中引入不确定性的各种近似值。在这里,我们在没有这些近似值的情况下重新访问了此问题,并检查其去除方式如何改变结果。我们在数值上求解了质量重新归一化A 1(p)的四个自洽的EliAshberg积分方程,化学势重新归一化A 2(p),配对函数φ(p)和列米的自我(偏振)函数π(q)使用迭代方法π(q)。我们的计算保留了这些方程式的明确非线性和动量依赖性。我们发现,丢弃一些常用的近似值可以更准确地确定超导间隙Δ=φ /a 1和临界温度t c。EliAshberg方程具有两个不同的收敛间隙解:扩展的S波间隙和D x 2 -2 -y 2波间隙。后者是脆弱的,而前者对小扰动的强大。
光电效应和热电子效应在说明性实验中结合在一起,以证明太阳光和热可以同时转化为电能。当电子从阴极发射并被阳极收集时,阳极和阴极费米能级之间会产生化学势差。当电子通过负载返回发射极费米能级时,可以提取功。当电子未被热化时,它被称为“热”电子。Ross 及其同事预测,热载流子转换系统的 AM1.5 效率极限为 66%,高于纯热系统的 52% 或量子系统的 33%(例如光伏电池)。本研究旨在提供一种易于复制的实验格式来探索这些概念。作为适合学生实验室的示例,商业真空光电管被用作量子和热能转换器。由 Ag 2 O:Cs 组成的 S1 光电阴极在低温下使用,T o 100 � C,以证明加热和照明光电管转换的功率大于在黑暗中加热或在室温下照明下获得的功率。虽然此示例中的转换效率和功率产量很小(约10 � 3 %),但实验展示了如何同时利用两种形式的太阳能。它还促进了对太阳能转换器进行评估的热力学方法。本文讨论了使用铯化 III/V 材料(例如InGaAsP:Cs)作为光电阴极作为实现高效热电子器件的可能研究途径。r 2004 Elsevier B.V. 保留所有权利。
研究二维材料时,一种常见的方法是将它们支撑在固体基底表面上。在这种情况下,如果要按需插入离子,即通过某种控制机制,则必须使离子与电解质接触。二维材料中特定离子相对于对电极的化学势差为离子插入提供了可控的驱动力。尽管基底本身可以充当固态电解质,例如离子导电玻璃陶瓷,[10–12] 但支撑二维材料层之间的离子插入可能会受到阻碍,因为有效插入通常通过边缘或缺陷位进行。从顶部涂抹电解质时更有可能覆盖这些位置——这种方法近年来被广泛使用,主要用于静电门控。 [13,14] 为了系统地解决离子插入和传输问题,将电解质与 2D 材料以图案化方式整合在一起非常重要,例如,对离子扩散过程施加方向性。这主要是样本大小和图案分辨率问题,在 100 µm 及以上的规模上可以解决,例如通过固态电解质的增材制造 [15] 或液态电解质的喷墨打印。[16–18] 目前,这些方法的局限性在于打印分辨率以及电解质的机械性能。因此,粘稠电解质或离子凝胶更容易打印,[16] 而一系列低粘度电池级电解质(如碳酸乙烯酯/碳酸二乙酯中的 LiPF 6)则不然。这些电解质往往很容易润湿样品的大部分表面,必须
摘要:我们研究了使用量子信息理论中的方法研究量子场理论的不同方面。为简单起见,我们专注于具有非零化学势的巨大乳汁费物,并在1 + 1个时空维度上起作用。使用纠缠熵在间隔上,我们构建一个有限的熵C-功能。与Lorentz-Invariant理论中发生的情况不同,这种C功能表现出强烈的单调性。它还编码从费米表面的远程纠缠的创建。是由以前在晶格模型上的作品动机的动机,我们接下来计算renyi熵并发现弗里德尔型振荡;这些从缺陷操作员产品扩展来理解。此外,我们将相互信息视为不同区域之间相关功能的量度。使用Cardy先前开发的长距离扩展,我们认为相互信息检测到膨胀中已经领先顺序的费米表面相关性。我们还分析了相对熵及其肾脏概括,以区分不同电荷和/或质量的状态。特别是我们表明,不同超选择扇区中的状态在相对熵中产生了超扩张的行为。最后,我们讨论了相互作用理论的可能扩展,并主张其中某些措施探测非Fermi液体的相关性。
摘要:最近的计算研究预测了许多新的三元氮化物,揭示了这一尚未充分探索的相空间中的合成机会。然而,合成新的三元氮化物很困难,部分原因是中间相和产物相通常具有较高的内聚能,会抑制扩散。本文,我们报告了通过 Ca 3 N 2 和 M Cl 4(M = Zr、Hf)之间的固态复分解反应合成两个新相,钙锆氮化物(CaZrN 2 )和钙铪氮化物(CaHfN 2 )。虽然反应名义上以 1:1 的前体比例通过 Ca 3 N 2 + M Cl 4 → Ca MN 2 + 2 CaCl 2 进行到目标相,但以这种方式制备的反应会产生缺钙材料(Ca x M 2 − x N 2 ,x < 1)。高分辨率同步加速器粉末 X 射线衍射证实,需要少量过量的 Ca 3 N 2 (约 20 mol %) 才能产生化学计量的 Ca MN 2 。原位同步加速器 X 射线衍射研究表明,名义化学计量反应在反应途径早期产生 Zr 3+ 中间体,需要过量的 Ca 3 N 2 将 Zr 3+ 中间体重新氧化回 CaZrN 2 的 Zr 4+ 氧化态。对计算得出的化学势图的分析合理化了这种合成方法及其与 MgZrN 2 合成的对比。这些发现还强调了原位衍射研究和计算热化学在为合成提供机械指导方面的实用性。■ 简介