摘要:在这项研究中,我们比较了IgM和IgG的检测与酶连接的免疫吸附测定法(ELISA)(EROOIMMMUN)和化学发光免疫剂(clia)(clia)(virclia,virclia,vircell)的检测。另外,间接免疫荧光测定(IFA)还用作参考测试。使用一百四十八血清进行IgG评估,而Igm进行了88个。在检测II期IgM中ELISA和CLIA的敏感性非常好。另一方面,CLIA IgM比ELISA IGM显示出更好的特异性。对于II期IgG,ELISA和CLIA的特异性相似,而ELISA技术显示出更高的灵敏度。总而言之,检测II期IgM抗体针对C. burnetii的最佳系统是Vircell的Clia,其特征是高灵敏度和特异性。用于检测II期IgG,Eurommmun ELISA和Vircell Clia分析适用于在实验室中确定该标记的,尽管IgG ELISA具有更大的敏感性。
a。离心技术:原理,差异离心,密度梯度离心,超中心及其在生物系统中的应用。b。色谱技术:色谱技术的原理类型,例如色谱柱,薄层,纸张,吸附,分区,气体液体,离子交换,亲和力,高性能及其应用。c。光度法和色彩法的原理和技术:啤酒和兰伯特法律,可见和超劣酸酯分光光度计,光谱荧光测定法,荧光法,磷光,磷光,化学发光,涡轮纤维化肾上腺仪,火焰光量原子量原子量原子原子原子吸收量及其应用。d。核磁共振,电子自旋谐振晶体学,质谱法,串联质谱,纳米技术和微结构,研究体内代谢中的技术,NMR,SPECT,PET,PET扫描:原理,仪器,仪器,技术,技术和应用,e。放射性原理:性质和类型,衰减速率放射性衰减,放射性单位,检测和测量,无线电活动,辐射危害及其在生物系统中无线电活动和无线电同位素的预防应用。f。电泳,原理,类型及其在生物系统中的应用。
通过向细胞中添加RIPA裂解缓冲液(ServiceBio)提取总蛋白质。蛋白浓度,并调整蛋白质浓度,以使它们之间在不同组之间保持一致。使用SDS-PAGE分离蛋白质,并转移到PVDF膜(美国Billerica,美国)。 初级抗体TFRC(1:10000),ACSL4(1:10000),GPX4(1:5000),FTH1(1:2000)和GAPDH(1:500)在4°C下孵育12小时。 这些抗体是从英国剑桥市ABCAM获得的。 使用1×TBST从PVDF膜表面取出初级抗体后,将山羊抗兔二级抗体(1:10000,ServiceBio)在室温下孵育12小时。 通过化学发光检测蛋白表达,并处理灰度值,并使用图像J. 计算相对蛋白表达。蛋白质,并转移到PVDF膜(美国Billerica,美国)。初级抗体TFRC(1:10000),ACSL4(1:10000),GPX4(1:5000),FTH1(1:2000)和GAPDH(1:500)在4°C下孵育12小时。这些抗体是从英国剑桥市ABCAM获得的。使用1×TBST从PVDF膜表面取出初级抗体后,将山羊抗兔二级抗体(1:10000,ServiceBio)在室温下孵育12小时。蛋白表达,并处理灰度值,并使用图像J.
摘要:甲状腺激素的测定对于甲状腺功能亢进症和甲状腺功能减退症疾病的疾病具有实际临床意义。考虑到这一方面,已经开发了包括免疫测定,化学发光,质谱和高性能液相色谱等广泛的分析方法。这种类型的分析提供了可行的结果。尽管如此,它需要合格的员工,特殊设施,并且耗时。因此,本文依赖于用喷墨打印技术开发的电化学设备的制造,以免费检测甲状腺素(T4)。为了制造我们的电化学设备,从扩增电信号的材料的使用中考虑了几个方面,到找到对目标分析物具有亲和力的超分子支架以及对电极表面上分析物的需求。对于此任务,用混合纳米材料修改了印刷设备,该混合纳米材料由氧化石墨烯(RGO)组成,该氧化石墨烯(RGO)用Au纳米颗粒(AU – NP)和包裹剂和不同的Thiolate Cyclodextrins(X – CD-SH)作为携带剂。分析物通过超分子化学的化学预召集,因为环糊精和激素之间的包含复合物形成。形态学和电化学表征,以确保电极的正确可行性,从而达到出色的响应,灵敏度和检测极限(LOD)。
缩写:165t,位于165位的苏氨酸(突变体); A165,位于165位的丙氨酸(野生型); AAV,腺相关病毒; ACTB,β-肌动蛋白; Alt,丙氨酸氨基转移酶; AST,天冬氨酸氨基转移酶; ATF6,激活转录因子6; CHX,环己酰亚胺; CQ,氯喹; DBEQ,Dibenzylquinazoline-2,4-二胺; ECL,增强的化学发光; ERAD,内质网相关降解; FACL4,脂肪酸-COA连接酶4; GCKR,葡萄糖酶调节剂; GWAS,全基因组协会研究; HMARC1,人线粒体减少的组件1; IP,免疫沉淀; IRE1,内切核酸酶肌醇提高酶1; ITR,反向终端重复;妈妈,线粒体相关的膜; MARC1,线粒体减少氨基氧霉素的成分1; MASLD,代谢功能障碍相关的脂肪分裂肝病; Mboat7,包含7的膜结合的O-酰基转移酶结构域; MMARC1,小鼠线粒体减少的成分1; ORO,油红色O染色; PERK,蛋白激酶R样性内质网(ER)激酶; PNPLA3,含patatin样磷脂酶结构域的蛋白3; RTA,相对总丰度; Ru,相对单位; SD,标准偏差; SDS,十二烷基硫酸钠; SDS-PAGE,十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳; SEM,平均值的标准误差; TM6SF2,跨膜6超家族成员2; UBC,泛素C; UBE2E1,泛素结合酶E2-E1; UBE3EC,泛素蛋白连接酶E3C; UPR,展开的蛋白质反应; UPS,泛素介导的蛋白酶体(降解)系统; VCP,含勇气的蛋白质。
为了证明开发的D-PCLIP的有用性,我们创建了DNA适体酶复合物作为DNA蛋白复合物的模型。具体而言,我们认识到人类血红蛋白(HB),这是DNA适体的疾病标志物之一,旨在使用葡萄糖氧化酶(GOX)使用化学发光来检测它。使用制备的DNA适体配合物检测到Hb,并在缓冲液和血清中确认高线性范围为6.3-50 nm(图2)。这表明可以测量临床所需的检测范围。此外,已经证实,该系统在电化学检测中的应用(可以在较短的时间内进行测量)也可以测量临床所需的检测范围。此外,为了验证D-PCLIP的多功能性,使用三种类型的DNA适体和两种酶创建了总共四种类型的DNA适体 - 酶复合物,并进行了功能评估。结果,已经证实,这两个配合物都保留了两者的功能。未来的发展:在这项研究中,我们开发了一个D-PCLIP,它可以不可逆地复杂DNA和蛋白质一对一。络合反应仅通过在4°C下进行混合而进行,从而易于生产保持这两种功能的DNA蛋白质复合物。此外,由于UDGX的DNA结合反应在DNA的乌拉西尔组中特别进展,因此可以通过调整乌拉西尔基团的位置来轻松设计蛋白质的融合位置。 D-PCLIP可以自由地更改DNA和蛋白质的组合,因此预计将在各种未来的应用中使用。例如,通过在抗体和DNA之间创建复合物,可以将其应用于诊断技术,例如免疫PCR或药物,以递送细胞特异性DNA。
在聚合物机械化学领域 [10,11],OFP [12,13] 可以实现光学可视化,并监测不同材料体系(从传统的热固性材料和热塑性材料 [14–18] 到蛋白质)内不同长度尺度上的机械诱导事件。[19–23] 在机械生物学领域也可以找到类似的概念。[24–27] 在施加力时,OFP 会发生构象、构型或组成键异构化反应,从而改变其在吸收、荧光或化学发光方面的光学性质。[28] 材料科学中高分辨率显微镜技术的出现甚至使我们能够追踪亚微米尺度的宏观材料损伤。[29–37] 因此,OFP 有助于开发具有改进性能的材料方法。 [38] 尽管 OFP 已成功用于研究合成和生物大分子材料的损伤,但令人惊讶的是,尚未使用 OFP 研究粘合剂的失效。现有的研究粘合剂疲劳和断裂的方法[39]包括目视检查、[40] X 射线光电子能谱、[41,42] 质谱 (MS)、[43,44] 傅里叶变换红外光谱、[42,45] 和接触角测量。[42] 然而,这些技术都无法对胶水成分的机械状态提供空间分辨的光学反馈。我们在此报道了一种由阳离子力响应蛋白 FRET 对和阴离子芳香族表面活性剂的静电共聚形成的生物胶。[46,47] 因此,我们将 FRET 供体荧光团连接到力响应的 FRET 受体荧光蛋白。在机械测试过程中,施加力会改变 FRET 效率,从而改变发射光谱以及供体荧光寿命。我们使用这些蛋白质粘合剂粘合高能和低能表面,以对其断裂行为进行详细的光学分析。机械损伤
通过雄激素受体作用的睾丸激素,以及通过芳香二醇(雌激素受体的激活剂)在脂肪组织,骨骼和骨骼肌生物学中起关键作用。这反映在将肥胖症和葡萄糖代谢无序代谢与较低的血清睾丸激素浓度和男性2型糖尿病(T2D)风险增加的流行病学研究中。睾丸激素还调节红细胞增多症,血管内皮和平滑肌细胞功能,对血细胞比容和心血管系统产生潜在的影响。预防2型糖尿病(T4DM)研究的睾丸激素招募了50岁及以上的男性,腰围为95厘米或超过95厘米或以上,葡萄糖耐受性受损或新诊断的T2D,以及血清睾丸激素浓度(如化学抗化学睾丸激素浓度(通过化学发光免疫量测量)该研究报告说,与安慰剂相比,在生活方式计划的背景下,对睾丸激素的1000 mg进行了为期2年的1000毫克,在3个月的肌肉内治疗,与安慰剂相比,T2D诊断的可能性降低了40%。这种作用伴随着空腹血糖的降低,并与人体成分,手柄强度,骨矿物质密度和骨骼微观结构的有利变化相关,而不是HbA1c,HBA1C是血糖控制的红细胞依赖性量度。没有信号发生心血管不良事件。With the objective of informing translational science and future directions, this article discusses mechanistic studies underpinning the rationale for T4DM and translational implications of the key outcomes relating to glycaemia, and body composition, together with effects on erythrocytosis, cardiovascular risk and slow recovery of the hypothalamo–pituitary–testicular axis.
简介:抗甲状腺过氧化物酶自身抗体(TPO)是您ROID腺体自身免疫性疾病的重要诊断工具。但是,由于方法之间的差异,TPO结果并不总是可比的。在这里,我们旨在研究两种现代实验室测量方法之间的差异:电化学发光(ECLIA)和化学发光微粒(CMIA)免疫测定。方法:对两种方法进行了234种血清样品:Cobas-E601(ECLIA)和Alinity I(CMIA)。tpo结果在统计上进行了定量和定性的比较(根据ECLIA/ CMIA参考范围,将结果编码为正/阴性。 div>结果:与制造商的主张相比,两种方法的精度都是可以接受的。两种方法之间存在非常强但不令人满意的相关性(Pearson r = 0.85)。传球回归显示线性(cusum p <0.01)和不可接受的定量关系存在明显的危险:截距-7.61,斜率1.10。此外,对总体和医学决策水平的平坦平淡 - 阿尔特曼情节的视觉分析证实了缺乏定量协议。对于定性分析,方法之间的一致性率为218/234(93.1%)。根据评估者一致性测试:加权Cohenκ= 0.805,该协议被认为是好的。结论:COBAS-E601(ECLIA)和Alinity I(CMIA)之间的定性一致性很好,因此,这两种方法可用于初步测试涉嫌患有甲状腺自身免疫性疾病的患者。然而,由于定量一致,这两种方法不应互换用于监测,因为结果可能会误导医生和患者,这可能导致医疗错误。关键字:CMIA,ECLIA,方法比较,甲状腺过氧化物酶抗体,TPO
通过雄激素受体作用的睾丸激素,以及通过芳香二醇(雌激素受体的激活剂)在脂肪组织,骨骼和骨骼肌生物学中起关键作用。这反映在将肥胖症和葡萄糖代谢无序代谢与较低的血清睾丸激素浓度和男性2型糖尿病(T2D)风险增加的流行病学研究中。睾丸激素还调节红细胞增多症,血管内皮和平滑肌细胞功能,对血细胞比容和心血管系统产生潜在的影响。预防2型糖尿病(T4DM)研究的睾丸激素招募了50岁及以上的男性,腰围为95厘米或超过95厘米或以上,葡萄糖耐受性受损或新诊断的T2D,以及血清睾丸激素浓度(如化学抗化学睾丸激素浓度(通过化学发光免疫量测量)该研究报告说,与安慰剂相比,在生活方式计划的背景下,对睾丸激素的1000 mg进行了为期2年的1000毫克,在3个月的肌肉内治疗,与安慰剂相比,T2D诊断的可能性降低了40%。这种作用伴随着空腹血糖的降低,并与人体成分,手柄强度,骨矿物质密度和骨骼微观结构的有利变化相关,而不是HbA1c,HBA1C是血糖控制的红细胞依赖性量度。没有信号发生心血管不良事件。With the objective of informing translational science and future directions, this article discusses mechanistic studies underpinning the rationale for T4DM and translational implications of the key outcomes relating to glycaemia, and body composition, together with effects on erythrocytosis, cardiovascular risk and slow recovery of the hypothalamo–pituitary–testicular axis.