[1] Switzer C,Moroney SE,Benner SA。将新碱基对酶促掺入DNA和RNA中。J Am Chem Soc,1989,111:8322-3 [2] Wang L,Brock A,Herberich B.扩大大肠杆菌的遗传密码。Science,2001,292:498-500 [3] Pinheiro VB,HolligerP。XNA世界:朝着复制和演变的进步合成遗传聚合物。Curr Opin Chem Biol,2012,16:245-52 [4] De Graaf AJ,Kooijman M,Hennink WE等。非天然氨基酸用于特定位点特异性蛋白质结合。Bioconjug Chem,2009,20:1281-95 [5] Schmidt M. Xenobiology:一种新的生活形式,作为最终的生物安全工具。Bioessays,2010,32:322-31 [6] Noren CJ,Anthony-Cahill SJ,Griffith MC等。一种将非天然氨基酸特异性掺入蛋白质中的一般方法。Science,1989,244:182-8 [7] Bain J,Switzer C,Chamberlin R等。 核糖体介导的非标准氨基酸通过遗传密码扩展到肽中。 自然,1992,356:537-9 [8] Matray TJ,Kool等。 DNA中无碱性损伤的特定伴侣。 自然,1999,399:704-8 [9] Hirao I,Kimoto M,Mitsui T等。 一种不自然的疏水基碱对系统:将核苷酸类似物特异性掺入到DNA和RNA中。 NAT方法,2006,3:729-35 [10] Wang W,Takimoto JK,Louie GV等。 遗传编码非天然氨基酸进行细胞和神经元研究。 nat Neurosci,2007,10:1063-72 [11] Leconte AM,Hwang GT,Matsuda S等。 J am Chem Soc,2008,130:2336-43Science,1989,244:182-8 [7] Bain J,Switzer C,Chamberlin R等。核糖体介导的非标准氨基酸通过遗传密码扩展到肽中。自然,1992,356:537-9 [8] Matray TJ,Kool等。DNA中无碱性损伤的特定伴侣。自然,1999,399:704-8 [9] Hirao I,Kimoto M,Mitsui T等。一种不自然的疏水基碱对系统:将核苷酸类似物特异性掺入到DNA和RNA中。NAT方法,2006,3:729-35 [10] Wang W,Takimoto JK,Louie GV等。遗传编码非天然氨基酸进行细胞和神经元研究。nat Neurosci,2007,10:1063-72 [11] Leconte AM,Hwang GT,Matsuda S等。J am Chem Soc,2008,130:2336-43发现,表征和优化不自然的碱基对,用于扩展遗传字母。
像所有理论一样,酶的出现是一种推测性的解释。酶是如何产生的?细胞生命的起源是一种推测性的解释。酶是基于思考和观察的生物催化剂。而且,像大多数理论一样,化学合成理论并不完美。它们是一种结构,具有两个主要困难,即任务非常具体。酶是化学合成理论中出现的。第一个困难是任务出现之前还是之后?这个问题描述了从混乱到组织的过渡——有点像“先有鸡还是一堆化学元素是如何变成鸡蛋的?”的困境。与任何关于有组织和生命形式的理论一样,化学合成理论基本上是想象一个随机系统可以产生这样的生命形式,不可能得到最终的证明。然而,尽管有组织和复杂的结构,如其已知的缺陷,但它是最合理的和真核细胞。第二个困难是对于现有证据的可用解释。
摘要 功能材料影响着我们生活的各个领域,从电子和计算设备到交通和健康。在本期《观点》中,我们研究了合成发现与它们所实现的科学突破之间的关系。通过追溯一些重要实例的发展,我们探索了这些材料最初是如何和为何合成的,以及它们的效用后来是如何被认可的。确定了三种常见的材料突破途径。在少数情况下,例如铝硅酸盐沸石催化剂 ZSM-5,通过使用基于早期工作的设计原理取得了重要进展。也有一些偶然的突破案例,例如巴基球和 Teflon R。然而,最常见的是,突破重新利用了一种已知的化合物,而这种化合物通常是出于好奇或为了不同的应用而制造的。通常,合成发现比功能发现早几十年;关键的例子包括导电聚合物、拓扑绝缘体和锂离子电池电极。简介 我们的观点探索了合成具有独特晶体结构的新型物质成分以何种方式带来材料发现和技术应用的重要进展。 初始合成本身就是一项化学发现,通常先于相关功能的实现,这可视为材料科学领域的一项发现。在少数情况下,后者是指获得一种具有新形态(通常是纳米级)的著名化合物。由石墨形成石墨烯,以及由 CdSe 等半导体创建量子点就是重要的例子。我们将表明,在许多情况下,材料科学的突破发生在与最初合成动机无关的领域。例如,锂钴氧化物 Li x CoO 2 自 1980 年代以来已发展成为可充电锂电池的主要电池阴极家族,而它最初在 1950 年代因其不寻常的磁性而被研究。事实上,我们发现许多例子,从最初的化学合成到重要材料应用的实现之间的时间间隔长达几十年。
酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。
关键词:化学合成,氧化铜(CUO),氧化锰(Mn 2 O 3)和Mn 2 O 3 /cuonanomamatials,超级电容器,环状伏安仪。1。Introduction: Mn 2 O 3 (manganese oxide) is helpful for supercapacitor applications due to its high specific capacitance, good electrical conductivity, and excellent electrochemical stability[1].Mn 2 O 3 is a non-toxic and environmentally benign material, making it suitable for sustainable energy storage applications[2].Mn 2 O 3 has a high specific capacitance, typically 200-400 F/g, which allows for high energy超级电容器中的存储密度[1,3] .mn 2 O 3具有相当好的电导率,可实现快速充电/放电速率和超级电容器的高功率密度。mn 2 O 3具有出色的电化学稳定性,可以长期循环寿命和超级电容器应用中的可靠性能[4] .cuo(氧化铜)可以表现出高达1000 f/g的特定电容,从而实现高能量密度。CuO的电导率比某些金属氧化物具有更好的电导率,从而改善了功率传递。它会经历可逆的还原氧化,导致高电容[5,6] .Combining Mn 2 O 3's和CuO的高电容(分别高达400 f/g和1000 f/g,分别为400 f/g和1000 f/g)会在MN 2 O 3/CUO组合中带来较低的整体电容性能[7]。 MN2O3,提高功率传递。两种金属氧化物的可逆氧化还原反应有助于高能量存储能力[8,9]。与单个氧化物相比,复合结构可以改善电化学稳定性。这些优点使用含有的土壤和低成本材料(如Mn和Cu)使这些复合材料在商业上可行[10]。
13. 为什么化学合成对深海中的自养生物和异养生物都很重要?答案各不相同。这是自养生物在被认为不存在生命的地方产生自身能量的机制。这些过程对异养生物很重要,因为异养生物依靠自养生物获取能量;反过来,自养生物又为丰富多样的群落的发展提供所需的食物。此外,海洋中任何导致所用化合物可用性发生变化的变化都可能对深海生物产生不利影响。深海中的许多生态系统都依赖于从海面落下的食物,这些食物是死物和被称为“海洋雪”的废物——但在存在化学喷口和渗漏的地区,从岩石和沉积物中升起的化学物质可提供能量。
可回收食品技术对于长期载人航天任务至关重要。本研究将传统和替代太空食品与使用回收二氧化碳的非生物合成 (NBS) 系统进行了比较。以二氧化碳的电化学转化为起点,回顾了不同的碳水化合物合成途径。糖和甘油被视为最终产品。分析了三次往返任务,共有 5 名机组人员,持续 3 年:国际空间站、月球和火星。等效系统质量 (ESM) 技术用于将 NBS 系统与通常储存的预包装食品、人工光培养的螺旋藻、氢氧化细菌 (HOB) 和微生物电合成 (MES) 进行比较。这允许对具有不同特征的系统的发射成本进行比较,包括设备质量、机载体积以及功率和散热要求。使用文献值通过质量和能量平衡估算功耗。NBS 系统的火星任务 ESM 估计在 10-30 吨以内。相比之下,螺旋藻的平均能耗为 65 吨,预包装食品的平均能耗为 35 吨,MES 的平均能耗为 25 吨,HOB 的平均能耗为 11 吨。据估计,NBS 与 HOB 和 MES 一起,是最节能的选择之一。NBS 系统的电能到食品的转换效率预计为 10-21%,单程碳产量高达 ~70%。虽然不建议将 NBS 应用于所有替代方案(即 HOB),但建议将其应用于预包装食品和螺旋藻基准。这些食品生产技术还可以帮助人类度过极端灾难。
2021 年,目前团队的一些成员与默克公司的同事一起寻找解决方案。他们用带状电缆代替电线建造了一个可以同时进行 24 次电化学反应的反应堆。他们指出,这虽然更好,但好不了多少。这促使他们采取了一种全新的方法——用光而不是电来为类似的反应堆装置供电。结果是一种由光驱动的无线反应堆装置,能够使用几乎任何尺寸的孔板。
二维共轭聚合物(2DCP)是一类单层到多层晶体聚合物材料,并在两个正交方向上具有共轭链接,这些方向有望从膜到电力。当前的界面合成方法已成功地从动态价值化学(例如亚胺链接)中构造了2DCP。但是,由于可逆性不足,这些方法不适合制造可稳健的核定链接的2DCP。在这里,我们报告了通过两亲吡迪辅助辅助藻型界面多凝结连接的2DCPS的合成。合成是通过烷基定量的三吡啶定甲基吡啶来实现的,该三吡啶可以在水界面上自组装成有序的单层,并通过醛型型拓扑拓扑敏感性地与多功能醛进行原位与多功能醛反应。最终的2DCP显示出远距离分子排序,较大的侧向尺寸和良好的控制厚度。实验和理论分析都表明,在水界面上的预组装三甲基吡啶丁物单层显着提高了其凝结反应性,从而促进了在轻度条件下2DCP的合成。在渗透发电机中具有固有正电荷的2DCP的整体可提供出色的输出功率密度,达到51.4 w m-2,高于报告最多的2D纳米孔膜。
烟酰胺腺嘌呤二核苷酸磷酸氧化酶2(NOX2)多亚基复合物是活性氧的高度丰富而中心的来源。nox2是涉及抗菌反应的先天免疫系统的关键酶,但是在许多疾病中,氧化应激和炎症涉及过多的NOX2活性。抑制NOX2作为一种治疗策略具有很大的潜力。抑制NOX2的有趣的药理学方法是靶向P47phox亚基,从而阻止蛋白质 - 蛋白质与P22Phox的相互作用,从而预防NOX2的组装和激活。但是,p47phox的浅结合袋使得开发类似药物的P47phox/p22phox抑制剂。最近,据报道,小分子LMH001抑制p47phox/p22phox相互作用,降低内皮NOX2活性,并保护小鼠免受血管紧张素II诱导的血管氧化应激的影响。这些值得注意的结果可能会对NOX2药理学领域产生重大影响,因为特定和有效的抑制剂很少。在这里,我们合成并测试了LMH001作为阳性对照。我们为提供LMH001提供了可靠的合成途径,但随后我们经历了LMH001在水性缓冲液中化学不稳定。此外,LMH001及其分解产物都不能抑制非细胞荧光极化测定法中的P47phox/ p22phox相互作用。但是,LHM001在功能性细胞测定中是NOX2的弱抑制剂,但与其分解产物之一相同的低效力。这些发现质疑LMH001的活性和建议的机制,并为对研究NOX2生物学的化学探针感兴趣的其他研究人员构成了重要信息。