将代谢产物作为后生物学以及这种方法的弱点和局限性的观点一直是最近出版物的重点。3现有的术语可以在简单,完全特征的代谢物(例如丁酸酯)或集体名称(例如填充物或无细胞的上清液)的情况下使用,可用于更多不受限制的代谢物的综合制剂。这种方法阻止了令人困惑的情况,即微生物衍生的代谢产物或代谢物混合物被称为“后生元”,但相同的化学合成制剂却不是。一些作者提出了使用“代晶剂”一词
Har Gobind Khorana是分子生物学史上的高耸人物,可以说是20世纪最著名的化学家之一。先驱对阐明遗传密码和具有定义序列的DNA和RNA的合成的贡献是该遗产的一部分。他是合成生物学的父亲,首先是用于化学合成指定序列的短DNA片段,并使用DNA聚合酶复制这些序列,然后将此DNA模板与RNA聚体转录为RNA中的RNA将RNA转录为RNA,以在蛋白质合成1中使用,第二,第二,第二种序列,并将其连接到Spart Pynthety DNA segments中。2这本科学为许多开创性发现和生物技术行业的发展奠定了基础。后来,他对七个跨膜螺旋螺旋的开创性工作也为几代膜生物学家遵循并引起了他所谓的“整体膜蛋白质黄金时代”的途径。 1970年实现了一个基因的第一个化学合成,用于tRNA的编码,并在1979年完成了具有所有必要序列的所有必要序列的完全活性tRNA基因。3,4这种科学本质上是化学的,是由分子生物学中新兴概念驱动的,在化学中至关重要的是生物学领域,并创造了1970年代中期重组DNA革命的重要组成部分。这些非凡的成就掩盖了印度一个小村庄的谦虚起源的生活故事,在英国和德国进行培训
未经处理的排放。从红泥中浸出有害物质会改变土壤和水的矿物质和微生物稳定性。4使用红泥作为化学合成中矿物质的来源可能会减少红泥积累的环境影响。红泥富含氧化铝,二氧化硅和铁矿物质,可以用作合成沸石,铝利酸盐和中孔材料的前体。5红泥已直接用作吸附剂6,并用作生产陶瓷的原材料,7种地球聚合物,8道路材料,9个铺一个铺在10,10涂层,11和催化剂。12由于其强大的碱性培养基,一些研究人员将红泥作为催化剂。li等。将红泥作为异质的芬顿催化剂利用。13 Hidayat等人。使用钙/红泥催化剂通过转移效应将废料油转化为生物柴油。14该催化剂是通过降低钙的金属盐溶液中的湿浸出的,以钙化为止。红泥中的高氧化铁含量被用作挥发性有机化合物的氧化15的氧化催化剂,并在水力碳热解过程中打破C - C和/或C - H键。16个热和化学物质在用于化学合成之前在红泥中分开杂质。在ZSM-5的合成中,用NaOH处理红色泥浆,以去除可能干扰沸石纯度的铁物种。17一些研究人员通过钙化处理红泥,以将红泥的结晶相变为无定形。18 HCl和H 2 SO 4用于减少
鉴定与目标蛋白特异性相互作用的小有机分子是化学研究中的一个重要问题,也是药物发现的一个关键挑战。1 – 3 在过去的几十年里,DNA 编码化学库 (DEL) 已经成为发现药学相关蛋白质配体的强大且经济有效的工具。4 – 8 DEL 是大量小分子的集合,它们通过化学合成与同源 DNA 序列共价连接,作为独特的分子条形码。该编码程序通过使用聚合酶链式反应 (PCR) 和高通量 DNA 测序进行 DNA 扩增,可以鉴定和相对定量库中的单个化合物。9 – 11
结构活性关系(SAR)计算机辅助药物设计(CADD)小分子化合物或图书馆的合成化学合成,发现和命中化合物的结构优化导致化合物的自定义合成,参考化合物和分子概念的特殊情况和分子构成,米中的构成,构成片段的构成,构成的构成,构成构成构成,构成片段,构成片段,构成片段构成,构成片段,构成片段构成的构成。同位素内部标准属性化合物的合成和手性化合物的分辨率缩放合成长达千克定量
本次冬季学校涵盖的主题包括过渡金属氧化物的化学和物理及其功能特性、材料的高压、化学和拓扑化学合成方法、晶体和磁性中的自旋有序、功能和量子材料、微观结构、纳米级异质结构、能量存储、转换和传输、腐蚀、电池储能材料的电化学、离子传输、催化、多孔固体、金属有机骨架、磁阻、二维材料、飞秒级过程、光谱和各种材料表征技术、量子点、分子磁体、分子电子学、结构和计算生物学、软材料、理论和计算量子化学以及材料科学和计算机模拟。
1 俄罗斯莫斯科高等经济学院生物与生物技术学院,2 俄罗斯莫斯科 P. Hertsen 莫斯科肿瘤研究所 - 俄罗斯联邦卫生部国家医学研究放射中心分支机构,3 俄罗斯符拉迪沃斯托克远东联邦大学生物医学学院,4 俄罗斯莫斯科 Bioclinicum 科学研究中心,5 俄罗斯科学院 Engelhardt 分子生物学研究所,俄罗斯莫斯科,6 瑞典乌普萨拉大学外科科学系,7 伊利诺伊大学药学院药学系,美国伊利诺伊州芝加哥,8 俄罗斯科学院 AV Topchiev 石油化学合成研究所,俄罗斯莫斯科,9 俄罗斯莫斯科 Shemyakin-Ovchinnikov 生物有机化学研究所生物医学微流体技术实验室
多种重要的化学合成过程都依赖于氢气,氢气的生产和使用通常由其与这些市场之一的联系所驱动。例如,氨是世界上产量最高的化学品之一,它主要依赖于氢气。氨主要用于农业肥料,被认为是过去一个世纪每单位土地农业产量翻番的主要原因 [4]。氢气的另一个主要用途是作为脱硫过程中石油精炼的催化剂。除了化学生产之外,氢气还用作钢铁生产中的还原剂,并且已被证明可以替代生铁生产中的冶金煤。它甚至用于食品的氢化反应中,以产生更耐储存的半固体脂肪。