在研究世界中,2024年将被记住为诺贝尔人人工智能奖(AI)。物理学的一种,授予约翰·霍普菲尔德(John Hopfield)和杰弗里·欣顿(Geoffrey Hinton)的基本发现和发明,使机器学习能够使用人工神经网络,已密封物理学与信息科学之间的联系,现在在经过50多年的富有成果的互动之后,现已正式在强烈的跨学科边界领域上进行正式交配(人工互动,2024年,2024年)。更具体地说,将AI连接到生物分子建模涉及授予David Baker的诺贝尔化学奖,用于计算蛋白质设计,Demis Hassabis和John Jumper用于蛋白质结构预测。许多统计数据说明了人工智能在生物模型领域的影响。在科学文献数据库中进行了与AI相关的关键字相关的与计算机建模相关的询问可得出约120,000个结果(如果搜索仅限于摘要,则结果约为6,000个结果,如图1所示)。从2018 - 19年开始观察到的指数上升是诺贝尔的序幕,大约与两个软件套件的外观Alphafold(Senifor et al。,2019)和Rosettafold(Humphreys等,2021)相吻合,该方法实现了蛋白质折叠和蛋白质折叠和蛋白质设计方法的方法。在奖励研究仅几年后获得诺贝尔奖非常罕见,但肯定不是偶然的。基于同源性建模的蛋白质结构预测的方法是从1990年代开始的,并在流行中实施
2018年诺贝尔化学奖授予弗朗西斯·阿诺德(Frances Arnold),强调了工程学的显着趋势:现在是可行的,甚至是必不可少的,即使用自动化的甲基元素来增强人类的设计和创造力。 今天的设计的规模和复杂性增加了,以至于人类无法再理解设计空间或考虑所有合理的能力。 突破这种设计障碍是在许多工程领域中削减的重要挑战。 Arnold使用定向进化来设计具有改进和新功能的酶。 定向演化通过随机突变产生变化,并根据指定的设计目标选择变化并扩增变化(例如,催化有用的反应)。 人类专家定义了问题,并且自动化的进化执行搜索,通常会找到比人类专家设计的更好的解决方案。 进化计算(EC)旨在在计算框架中利用这一过程。 ec与诸如深度学习之类的机器学习方法明显不同,这些方法学习了正确答案的现象的预测模型。 相比之下,EC通过迭代地应用突变,重组和选择对数字个体的种群创建新的解决方案(图 1)。 这些方法(遗传编程4和进化策略5)已被应用于需要工程和科学创造力6 - 9的各种问题。 除了这些实际应用之外,EC拥有2018年诺贝尔化学奖授予弗朗西斯·阿诺德(Frances Arnold),强调了工程学的显着趋势:现在是可行的,甚至是必不可少的,即使用自动化的甲基元素来增强人类的设计和创造力。今天的设计的规模和复杂性增加了,以至于人类无法再理解设计空间或考虑所有合理的能力。突破这种设计障碍是在许多工程领域中削减的重要挑战。Arnold使用定向进化来设计具有改进和新功能的酶。定向演化通过随机突变产生变化,并根据指定的设计目标选择变化并扩增变化(例如,催化有用的反应)。人类专家定义了问题,并且自动化的进化执行搜索,通常会找到比人类专家设计的更好的解决方案。进化计算(EC)旨在在计算框架中利用这一过程。ec与诸如深度学习之类的机器学习方法明显不同,这些方法学习了正确答案的现象的预测模型。相比之下,EC通过迭代地应用突变,重组和选择对数字个体的种群创建新的解决方案(图1)。这些方法(遗传编程4和进化策略5)已被应用于需要工程和科学创造力6 - 9的各种问题。除了这些实际应用之外,EC拥有鉴于最近已获得的计算能力和数据(超过二十年前的数百万次)现在是实用的,可以模拟现实世界中的程序并进化与它们交互的工程系统的解决方案。示例包括:为农业的模拟和设计增长食谱,违反直觉但表现优于人类10,设计了改进的疾病和伤害的治疗方法11、12,造成机器人和车辆的造成的机器人和车辆,其中人为设计的控制效率不得,效率不足14,并为机器和化学工艺创造了改进的设计。
• 德国 Max-Planck 奖学金 (1995-1996) • 印度固体化学家协会颁发的 Laxmi 博士奖 (2001) • 印度热分析学会颁发的 Rheometric Scientific-ITAS 奖 (2002) • 印度核学会金牌 (2003) • MRSI 奖章 (2005) • CRSI 铜牌 (2006) • DAE-Homi Bhabha 科学技术奖 (2006) • IANCAS 颁发的 Tarun Datta 博士纪念奖 (2007) • 印度化学学会的 RD Desai 纪念奖 (2009) • DAE-SRC 杰出研究员奖 (2010) • Rajib Goyal 化学科学奖 (2010) • DAE 集团成就奖 (2012 和 2018) • CRSI - CNR Rao 教授国家化学科学奖 (2012) • ISCB 化学科学卓越奖(2013) • MRSI-ICSC 材料科学高级奖 (2014) • 海岸化学研究学会奖 (2014) • ISCA-白金禧年演讲奖 (2015) • 年度冶金学家奖 (2017) • CRSI-银牌 (2018) • MRSI-CNR Rao 先进材料奖 (2018) • 国家固体和材料化学奖 (2018) • 印度科学大会的 Acharya PC Ray 纪念奖 (2020) • NASI – NR Dhar 教授纪念奖 (2021) • JNCASR-Prof. AV Rama Rao 基金会讲座奖(2022 年) • 印度热分析学会颁发的 NETZSCH – ITAS 奖(2022 年) • MRSI 年度杰出材料科学家奖(2023 年) • 印度陶瓷学会颁发的 DN Agarwal 纪念奖(2023 年) • Chirantan Rasayan Sanstha 颁发的金牌(2024 年)
战胜遗传病的梦想曾经只是个梦想,如今已经成为现实。基因工程的历史可以追溯到 20 世纪 50 年代初,当时罗莎琳德·富兰克林突破性的脱氧核糖核酸 (DNA) 的 X 射线衍射图像开启了基因工程的历史,并导致了 1953 年詹姆斯·沃森和弗朗西斯·HC·克里克对众所周知的双螺旋结构进行了解释。1 从那时起,人类就对这种分子——所有生物的核心——DNA 产生了浓厚的兴趣。1967 年马丁·盖勒特、I. 罗伯特·莱曼、查尔斯·C·理查森和杰拉德·赫尔维茨实验室发现连接酶 2,1968 年发现限制性酶 3,导致了重组 DNA 的诞生——这是基因工程领域的一个里程碑。保罗·伯格是第一个研究组成 DNA 分子的核酸生物化学的人,并于 1980 年获得诺贝尔化学奖。这一发现引发了这样一种假设:任何两个 DNA 分子都可以通过共价键连接在一起。他的假设得到了证实,保罗·伯格也因此成为第一位使用“切割和拼接”方法从多个物种中创建重组 DNA 的科学家。4 更进一步的是,1975 年左右杂交瘤技术的出现为这一领域开辟了新的领域。5 这项技术带来了用于诊断和治疗目的的精心设计和高精度抗体。生物技术的进步激发了古怪的思想,他们寻找可以用来改变 DNA 编码序列本身部分的方法。
绝大多数生物体中的 DNA 是生命的分子蓝图。DNA 中以序列形式存在的遗传密码首先以 RNA 的形式复制,然后进一步翻译为蛋白质。蛋白质在细胞中发挥结构或生化功能。1953 年,JD Watson 和 FHC Crick 报道了 DNA 的分子结构 [1]。从那时起,科学家们就一直试图开发能够操纵细胞和生物体遗传物质的技术。随着我们从细菌等低等生物转向人类等高等生物,基因操作变得越来越复杂和难以实现。许多生物体已被证明在遗传上难以处理,因为在这些生物体中基因操作仍然难以实现。随着 RNA 引导的 CRISPR-Cas9 系统的发现,一种简单有效的基因组工程方法现已成为现实。这项技术的发展使科学家能够修改各种细胞和生物体中的 DNA 序列,从而有可能改变生命的密码。基因组操作不再是实验瓶颈。如今,CRISPR-Cas9 技术已广泛应用于基础科学、生物技术和未来疗法的开发 [2]。法国微生物学家、德国柏林马克斯·普朗克病原体科学中心主任 Emanuelle Charpentier 和美国生物化学家、美国加州大学伯克利分校教授兼霍华德·休斯医学研究所研究员 Jennifer A. Doudna 因开发出一种基因组编辑方法而共同获得了 2020 年诺贝尔化学奖。该基因组编辑工具来自对一种名为化脓性链球菌的人类病原体 CRISPR-Cas9 系统的研究。
锂离子电池对社会产生了巨大影响,最近获得了诺贝尔化学奖 1、2。经过几十年的商业化,锂离子电池正迅速接近其能量密度的理论极限,从而推动了锂金属化学的复兴 3-6。然而,锂金属电池的推广应用受到其循环寿命较短的困扰 4、5。锂金属和电解质之间无法控制的副反应形成化学不稳定、机械易碎的固体电解质界面相 (SEI)。SEI 在循环过程中容易破裂,导致树枝状生长、“死锂”形成和不可逆的锂库存损失 4。电解质工程可以调整 SEI 结构和化学性质,使其成为实现锂金属负极的关键且实用的方法 7、8。对于一种有前景的电解质,必须同时满足几个关键要求 9 – 11 :(1)始终如一的高库仑效率(CE)以最大限度地减少锂的损失,包括在初始循环中,(2)在贫电解质和有限过量锂条件下的功能性以实现最大比能量,(3)对高压正极的氧化稳定性,(4)合理的低盐浓度以实现成本效益和(5)高沸点和不可燃性以确保安全性和可加工性。电解质工程方面的最新研究提高了锂金属电池的循环性,包括盐添加剂优化 12 、溶剂比例修改 13 、 14 和液化气电解质 15 。特别是,高浓度电解质 16、17 和局部高浓度电解质 11、18 – 22 被认为是最有效的方法。高浓度电解质成功减少了 Li + 溶剂化结构中的游离溶剂分子,从而形成了以无机为主的 SEI 和更好的锂循环性能。整个系列
术语表 (注1) 腹侧海马CA1区 海马被称为记忆的中心,其背部和腹部具有不同的功能。已知海马体背侧CA1区域的神经元储存着关于空间和时间的信息,而该研究小组发现腹侧CA1区域的神经元储存着关于“别人是谁”的记忆。 (注2)体内基因组编辑技术(CRISPR/Cas9方法) 一种切割目标基因组序列中的DNA双链的基因修饰工具。 CRISPR/Cas9 由切割 DNA 的“Cas9 核酸酶”和识别目标基因组序列的“引导 RNA”组成。 DNA断裂常常无法准确修复这一事实可以用来诱发目标基因的突变。近年来,体内基因组编辑技术备受关注,该技术通过直接传递 CRISPR/Cas9 分子实现生物体内部基因组编辑。该技术不仅在基础研究方面被寄予厚望,在遗传疾病的临床应用方面也被寄予厚望,该技术的发现获得了2020年的诺贝尔化学奖。 (注3)细胞外囊泡 细胞外囊泡是由细胞分泌的脂质膜囊泡,含有多种核酸、脂质、蛋白质等。众所周知,细胞通过将这种分子运送到其他细胞来相互通讯。近年来,人们越来越期待将治疗分子封装在细胞外囊泡中以用于生物制药的应用。在本研究中,我们将 CRISPR/Cas9 方法的分子封装在细胞外囊泡中,并将其引入目标脑区域以诱导脑区域特异性突变(图 4)。
摘要:Cas-9 是一种酶,它使用 CRISPR 序列作为指导,用于检测和分离与 CRISPR 序列互补的基因组部分。Cas9(CRISPR 相关蛋白 9,以前称为 Cas5、Csn1 或 Csx12)在人类免疫系统对抗 DNA 病毒中起着重要作用,也用于基因工程方法。它们能够在基因组编辑中切割 DNA 序列的一部分。CRISPR-Cas-9 编辑由 Emmanuelle Charpentier 和 Jennifer Doudna(2020 年诺贝尔化学奖获得者)创立。CRISPR 已被编辑用于制作转录项目,使研究人员能够激活特定基因。CRISPR-Cas 有两种类型;第 1 类由多个 Cas 蛋白组成,用于降解外来核酸碱基。第 2 类由单个巨大的 Cas 蛋白组成,具有相同的作用。衰老是组织和细胞成分一生中随机破坏的结果。随着年龄的增长,免疫力下降和炎症的发生与细胞和组织损伤事件的发生有关,而这些损伤是一生中都会发生的。DNA 传感信号通过错误放置的细胞质激活,从而启动先天免疫反应。微核与衰老完全相关,并影响衰老,因为它总是出现在多种衰老综合征和癌症中。因此,微核可能在基因组不稳定性、先天免疫激活和衰老组织的一些特征与 Verubecestat、多奈哌齐、美金刚、加兰他敏、他克林、Exelon、利伐斯的明、7-MEOTA 和阿昔洛韦的不同药物特性之间表现出机制联系。其中,他克林被发现具有最高的(负)结合能,并进一步进行了分子动力学 (MD) 模拟分析。
它能够影响甚至改变个体基因,从而影响所有生物以及它们自己。这种可能性可以被视为现代社会最伟大的科学成就之一,但也是无数伦理困境的根源。尽管基因的定向改变这一课题是较新的,但现代遗传学作为理论和实践研究的主题是由格雷戈尔·约翰·孟德尔发起的。这一遗传学领域的最新科学成就也得到了瑞典科学院的认可,瑞典科学院于 2020 年将诺贝尔化学奖授予两位科学家,法国女性埃马纽埃尔·卡彭蒂耶 (Emmanuelle Charpentier) 和美国女性詹妮弗·杜德纳 (Jennifer Doudna),以表彰她们发现并改进了 CRISPR-Cas9 工具。他们于2014年发表了第一篇关于此问题的系统性著作。科学家们自己也在各种声明中表示,这一发现超越了我们的时代,在应用时需要谨慎,并尊重一切道德原则。杜德娜在 2016 年对可能“生产”转基因个体的问题的回答意义重大:“这不是一场噩梦,而是一种准确定性。”有一天它会发生。我不知道在哪里,什么时候,但有一天,我会醒来看到这个消息。我希望我们能够充分并尽可能地为此做好准备。”2 因此,我们的基本出发点是,健康和生命的技术化,尤其是人类健康和生命的技术化,无论使用各种技术工具的准确性如何,几乎总是存在着偏离人类道路的内在危险,并进入操纵生命的逻辑,将生命理解为仅仅是需要处理的物质。因此,本文的目标是介绍 CRISPR 系统的基本特征,简要介绍其在人体中的应用,并强调它所带来的紧迫的伦理挑战。
第一次,两名妇女分享了诺贝尔化学奖 - 加州大学伯克利分校的珍妮弗·杜德纳(Jennifer Doudna)和MPI柏林MPI的Emmanuelle Charpentier开发了一种基因组编辑方法,称为“ CRISPR”,这已经改变了我们的科学方式。该方法现在被广泛用于开发新颖的诊断和治疗学,展示了基本科学如何改变世界以及解决问题的解决方案通常来自意外的方向。“总是鼓励学生追求自己的激情,因为我们不知道下一个大发现和技术将来自哪里。谁知道细菌免疫系统会成为一种改变世界的基因编辑技术?,但是我们在这里。”杜德纳(Doudna)说,今天凌晨2:53从一位记者觉醒,这是她第一次赢得了诺贝尔奖反思她在科学领域的职业,她指出:“长大后,我被告知女孩不做化学反应,或者女孩不做科学 - 幸运的是我忽略了![…]思考我的大学经历,受到女性生物化学家,波莫纳学院的莎朗·帕纳森科(Sharon Panasenko)的培训,他对我的真正鼓舞人心,多年来我一直很支持我的导师……帮助自己建立对自己的科学家的信心,这一直是关键”。罗莎琳德·富兰克林(Rosalind Franklin W)在著名的DNA结构上闻名的著名的著名作品杜德纳说:“许多妇女认为,无论她们做什么,他们的工作永远都不会像男人一样被认可。杜德纳说:“许多妇女认为,无论她们做什么,他们的工作永远都不会像男人一样被认可。我认为(这个奖项)反驳了这一点。它发表了强烈的说法,即女性可以做科学,女性可以做化学,并且伟大的科学得到了认可和尊重。”恭喜,继续成为#WOMENINSTEM的灵感!
