地球上的生命(Eldridge 1998)。丧失了常见或丰富的基础物种(Sensu Dayton 1972;参见第1章),该物种的结构或功能属性会创造并定义了整个生态综合或生态系统,可能会对我们对相关的Biota,生态系统,生态系统,生态系统功能和稳定性的景观和广泛的后果和稳定性产生巨大影响。基础物种与Keystone捕食者不同(Paine 1966),因为前者通常占据低营养水平,而后者通常是顶级捕食者。它们也与核心物种不同(Hanski 1982),因为基础物种不仅在局部丰富和区域性,而且还创造了许多其他物种所需的局部稳定条件。他们还有助于稳定基本的生态系统过程,例如生产力和水平衡。树木最有可能是森林生态系统中的基础物种,因为它们的建筑以及功能和生理特征定义了森林结构并改变了微气候,而其生物量和化学
电力到液体过程的经济绩效在很大程度上取决于电源的功能。例如,电力成本和满载时间。离网解决方案可以确保便宜的绿色电力而不会暴露于电力市场的波动。已经对固体氧化电解场和Fischer-Tropsch合成的液体植物进行了技术经济评估。在植物尺度上从1到1000兆瓦EL处的三个过程配置的离网和网格的方案。额定电解液功率。Fischer-Tropsch产品的净生产成本范围为2.42至4.56欧元 /千克,用于基于网格的情况。相比之下,针对评估的离网情况确定了1.28至2.40欧元 /千克的值。扩大植物的扩展显示超过100兆瓦EL的阈值后,净生产成本的下降减少。由于实质性相对电力成本高达88%。因此,未来的电力到液体项目应以100兆瓦EL的规模设计。额定电解液功率。此外,建议通过实施混合可再生电厂以及电力和Syngas存储技术来使用超过4000 h/a的可用性。
化学工程专业为学生提供以科学、数学和工程基础知识为基础的广泛教育,然后利用现代工具(如计算软件和计算机辅助设计)应用于当代问题。化学工程师传统上受雇于化学、石化、农用化学品、纸浆和造纸、塑料、化妆品和纺织行业以及咨询和设计公司。今天,化学工程师还在生物过程和生物医学、大数据和人工智能、可持续性和能源以及包括纳米技术在内的先进材料研究中发挥着不可或缺的作用。例如,化学工程师正在创造太空探索、替代能源和更快的自供电计算机芯片所需的新材料。在生物技术和生物医学领域,化学工程师致力于了解人类疾病,开发新的治疗方法和药物输送系统,并通过细胞培养技术生产新药。化学工程师利用纳米技术彻底改变传感器、安全系统以及医疗诊断和治疗。除了创造重要产品外,化学工程师还参与保护我们的环境,探索减少酸雨和烟雾的方法;回收和减少废物;开发新的环保能源;设计本质上安全、高效和“绿色”的工艺。化学工程师的作用是开发新产品和设计工艺,同时降低成本、提高产量并提高新产品的质量和安全性。
寻找能够去除广泛有机污染物的非特异性催化剂的搜索仍然是他们在水生环境中越来越多的存在的关键挑战。在这项正在进行的探索中,这项工作构成了将二氧化物作为生态氧化自由基的激活剂的使用,其中,由于它们可以产生的自由基的有价值的自由基的有价值的效率,因此原始物质(PMS)具有突出性。使用伏击计量学技术分析了电活性溶液成分对电化学制剂的影响。组成和结构表征证实了成功的形成。沉积退火处理会导致新物种,例如在250ºC时Bi 7 O 9 I 3,主要是在420或520ºC时Bi 5 O 7 I I,也表现出可见的光吸收,为在阳光下使用的方式铺平了道路。最初,采用单个四环素(TC)溶液来测试制备膜的降解和矿化能力,评估溶液的pH值,PMS的存在,光照射和退火温度的影响。退火温度增加了催化作用。值得注意的是,对于所有碘化碘化物膜,在组合PMS和可见光照射时观察到最高的催化活性,展示了协同的改进。这种趋势也适用于MUL Tipollutant解决方案。在材料应用的关键作用中,结果表明,低于450ºC的退火温度促进了膜,这些膜在连续重复使用后合理地保持其活性和化学稳定性。
摘要:在过去的几十年里,人工智能 (AI) 深刻地改变了化学工程的格局,标志着从早期的基于规则的系统到当今复杂的机器学习和深度学习技术的旅程。这篇全面的评论探讨了人工智能在化学工程中的历史发展、当前最先进的应用和未来前景。从优化流程和预测性维护到设计新材料和药物,人工智能已经无缝融入化学工程的各个方面,提高了效率和可持续性。本文设想了一个未来,人工智能驱动的自动化和自适应控制系统将在化学过程中发挥核心作用,应对挑战,同时强调负责任的创新。最终,人工智能的变革性影响有望重新定义化学工程领域的效率、可持续性和创新的界限。
E44 EECE 505 水生化学 水生化学控制着微量金属和营养物的生物地球化学循环、污染物命运和运输以及水和废水处理过程的性能。本课程研究与自然和工程水生系统相关的化学反应。定量方法强调化学平衡和动力学问题的解决。涵盖的主题包括化学平衡和动力学、酸碱平衡和碱度、固体的溶解和沉淀、金属的络合、氧化还原过程以及固体表面的反应。本课程的主要目标是能够制定和解决复杂环境系统的化学平衡问题。除了手动解决问题以培养对水生系统的化学直觉外,还介绍了用于解决化学平衡问题的软件应用。先决条件:大四或研究生水平或讲师许可。参加本课程的学生应具备普通化学知识。学分 3 个单位。英语:BME T,TU
彭拜博士,中国欣德华大学开发下一代电池;探测微型电极至纳米级的原位电化学动力学;捕获晚期电极的异质性和随机性;通过基于物理学的数学建模和仿真来确定材料,电极和电池合理设计的理论途径和边界