目的和使用科学是一种使用观察和实验来解释自然现象的理解物理宇宙的方式。科学还指一个有组织的知识体,其中包含核心学科和弥合学科的共同主题的核心思想。作为科学教育者,我们必须采取三维方法来促进学生学习。通过解决内容,科学和工程实践以及交叉概念,学生可以拥有相关和基于证据的教学,可以帮助解决当前和未来的问题。本文档旨在作为辨别学生及其作品的特征的指南,他们满足了既定的绩效期望(PE)。本文档并不是要从封面上阅读,而是要在需要时使用以支持教师专业学习和课程决策。这不是用于学生使用的,因此不是用学生友好的语言编写的。这不是限制教室中指令的课程或手段。尽管每个PE都陈述了专门的科学和工程实践(SEP)和横切概念(CCC),但学生将需要使用整个SEP和CCC来在教学结束之前取得成功。三维科学学习需要纪律特定的沟通能力。这意味着当希望学生以适合科学的方式讲话,倾听,阅读和写作时,就会发生有效的科学学习。本节中的条款和词干旨在为教师提供基准,既不详尽又完整。对于每个绩效目标,都有问题/句子的词干和术语来支持学生对现象的论述,以帮助教师促进科学话语的获取。在孤立或在经验之前教授语境(前载)的词或概念会剥夺学生的感知机会,从而导致更深入的概念理解。除了(SEP),思考(CCC)和了解科学知识(纪律核心思想)之外,学生还将需要了解适当的成绩适当工具和科学技术的工作知识。学生应该知道并认识到科学家和工程师如何使用这些工具和技术,而不仅仅是识别它们。学生应该能够使用这些工具来收集数据,描述这些工具如何收集数据和/或从中解释数据。
热处理是一种显著改变材料性能的方法。当材料缺乏某些机械性能时,可以通过加热来改变其化学性能和微观结构。这有助于实现更好的屈服强度、延展性和韧性。本项目讨论了多种不同的热处理方法对几种材料的影响,以提高延展性和伸长率而不降低强度。所讨论的材料是高铝钢和 Strenx 700MC 钢,前者正在开发中,后者是市售钢。这些钢有望用作高延展性、高强度和第三代钢。热处理可以改变基础材料的机械性能,从而优化这些钢以用于垂直接入解决方案。
Zeon的环烯烃聚合物(COP)具有出色的光学和化学性能。在产品名称Zeonex®和Zeonor®下,它们被广泛用于光学膜和镜头,医学和生物技术应用,同时获得了高度好评的评论。2019财年的专业塑料业务业务规模为568亿日元的净销售额。目前,用于电视和智能手机的LCD和OLED面板的光学电影业务占用了COP业务的很大一部分。COP的特征不仅适用于光学膜;他们还具有在广泛的使用设置中申请的潜力,包括我们2019年公司报告中概述的医疗应用程序。在这里,我们在电子设备中介绍了COP的使用。
自从发现石墨烯以来,二维(2D)纳米材料一直是由于其独特的物理和化学性能,例如大型C表面积,出色的光学透明度以及出色的电导率和热导电性,因此无法研究兴趣。1,2在这些材料中,由共价键与薄板状形态相关的不同组成组成的材料特别引起了人们的关注。3 - 5然而,实现所需的材料特性o te依赖于非共价P堆叠相互作用,这些相互作用在材料构造6 - 9和相干能量传输中起着至关重要的作用。10 - 12,例如,通过P - P堆叠相互作用,PSystems堆叠成一维(1D)柱状P堆栈,这有助于导向能量运输,并为有机电子和光子材料的开发铺平了道路。13 - 17为此,迫切需要制定有效的策略
摘要:二元Ti-Zr同质合金因具有高结构稳定性和良好成形性而成为激光定向能量沉积的潜在候选材料。针对其强度不足的问题,基于团簇模型设计了一系列不同Mo含量的Ti-Zr-Mo合金,并利用激光定向能量沉积技术在高纯钛基体上制备了该合金。研究了Mo含量对激光定向能量沉积合金组织和性能的影响。结果表明,所有设计合金的组织均为近等轴β晶粒,无明显织构。然而,随着Mo含量的增加,晶粒逐渐细化,晶格常数逐渐减小,有效提高了设计合金的硬度、强度、耐磨性和耐腐蚀性,但略微削弱了延展性和成形性。从性能和成形质量来看,Ti 60.94 Zr 36.72 Mo 2.34(at.%)合金的力学性能、摩擦学性能、化学性能和成形性能匹配良好,广泛应用于航空发动机零部件。
摘要 纳米技术已成为化学、医学、材料科学和工程等多个科学领域的研究焦点。纳米技术与耐火材料的结合,尤其是纳米颗粒、纳米添加剂和纳米结构材料等纳米材料的使用,为钢铁、玻璃、铸造和水泥等行业带来了突破性进展。本文深入探讨了整体耐火材料的最新发展,重点介绍了纳米技术如何提高其在高温应用中的性能、耐久性和整体效率。特别关注了特定纳米材料在改善可浇注耐火材料的机械、热学和化学性能方面的作用。这些进步不仅延长了耐火材料的使用寿命,而且还带来了显著的经济和环境效益,使其成为现代工业过程中不可或缺的一部分。这篇全面的综述为寻求利用纳米技术开发更强大、更高效的耐火材料解决方案的研究人员和工程师提供了宝贵的资源。关键词:纳米技术、耐火材料、不定形耐火材料、可浇注耐火材料、耐腐蚀、高温应用、纳米材料简介
项目描述铜和黄金等优质金属部署了许多电子来进行电力,但是延性(或“软”),尤其是在高温下。陶瓷材料是“硬”和耐热的,但电气导体不良。我们是否可以找到具有良好电导率的“硬”金属或合金,可以在高温下抵抗机械变形?远不是一个学术问题,一个肯定的答案也将对您产生切实的实际后果!鉴于对数据存储的需求不断增加,硬盘驱动器(HDD)背后的技术已被推到极限。热辅助内存记录(HAMR)使用金属近场换能器(NFT)在很小的(一些纳米!)上写入磁性域,然后增加HDD容量。由于其电气和化学性能,黄金是当前选择的材料,但是机械缺陷限制了其对当前HAMR技术的可靠性。“硬”金属或合金具有与黄金相当的特性,但不像黄金那样“柔软”。
超薄的二维(2D)过渡金属氧化物和氢氧化物(TMO和TMH)纳米片对于由于一组独特的物理和化学性能而产生高性能的储能设备具有吸引力。此类材料的扁平2D结构提供了足够数量的活性吸附中心,并且在几种纳米的订单上,超小的厚度提供了快速电荷传递,从而显着提高了电子电导率。这篇简短的评论总结了基于超薄的2D纳米片的材料合成的最新进展,用于储能应用,包括假能力,锂离子电池和其他可充电设备。该评论还提供了有关各种功率来源基于TMO和TMH的超薄纳米材料合成2D纳米材料的代表性工作的例子。总而言之,本文讨论了可能进一步开发超薄二维过渡金属氧化物和氢氧化物的方法和途径的前景和方向。
使用SRC技术的微波消化系统的最新模型,Ultravave 3,扩大了该技术的好处。它可容纳多达40%的同一直径小瓶,确保出色的工作流程和更好的周转时间。反应器受PTFE衬里完全保护,并覆盖具有与任何化学性能的完全耐腐蚀性和兼容性,而没有体积限制或设置修改。此外,Ultravave 3结合了单独的高压线,用于氮气引入和去除,以防止冷凝水滴进入反应器。这些线会自动冲洗以最大程度地减少潜在的污染,从而延长了系统的寿命。该单元上的水冷磁控管是一种新的无嘈杂的高效系统。它独立于环境温度,比常规系统更长的寿命,而无论操作条件如何。使用一次性玻璃小瓶时,清洁变得不必要,进一步简化了样本准备工作流程。由高纯度PTFE-TFM和石英制成的小瓶可实现