* 通讯作者:Yoonbae Oh,梅奥诊所神经外科研究部,美国明尼苏达州罗切斯特市 55902;梅奥诊所生物医学工程部,美国明尼苏达州罗切斯特市 55902,电子邮件:Oh.Yoonbae@mayo.edu Juan M. Rojas Cabrera、J. Blair Price、Danielle Jondal、Abhijeet S. Barath、Hojin Shin、Su-Youne Chang、Charles D. Blaha:梅奥诊所神经外科研究部,美国明尼苏达州罗切斯特市 55902;Aaron E. Rusheen、Abhinav Goyal:梅奥诊所神经外科研究部,美国明尼苏达州罗切斯特市 55902;梅奥诊所医学科学家培训计划,美国明尼苏达州罗切斯特 55902 Kevin E. Bennet:梅奥诊所神经外科研究部,美国明尼苏达州罗切斯特 55902;梅奥诊所工程部,美国明尼苏达州罗切斯特 55902 Kendall H. Lee:梅奥诊所神经外科研究部,美国明尼苏达州罗切斯特 55902;梅奥诊所生物医学工程部,美国明尼苏达州罗切斯特 55902 # 这些作者对本文的贡献相同
为此,第一个步骤是研究和分析失败或衰老机制和模式[1-6]。要执行此操作,必须利用现有数据,或者必须通过执行单元格的加速衰老(骑自行车和/或日历)来创建数据[7,8]。这需要包装中每个单元格的表征[9]。可以通过电测量,热测量,化学测量,物理测量或通过死后分析来进行老化机制的研究[10-14]。可以考虑到温度,充电状态,排放深度,C率等的建模[15,16]。当有大量数据可用时,统计研究或人工智能的使用也可以[17-19]。
1个国家主要实验室基础基本的土著药用植物资源利用,新疆物理与化学技术研究所,中国科学院,乌鲁姆奇,乌鲁姆奇,中国人民共和国2中国科学院2中华人民共和国Urumqi的新疆Uyghur自治区5广东省级化学测量和紧急测试技术主要实验室,广东省省级工程研究中心质量与安全研究中心,中国分析中心,中国国家分析中心,广场分析中心,中国广场分析中心,中国人民分析中心,中国人民分析中心
掺杂氮的碳量子点是通过一步大气压微质量工艺合成的。使用一系列的光学和化学测量以及通过理论计算来研究观察到的光致发光发射及其与氮掺杂的关系。氮掺杂到核心和氧基团的表面状态的功能化产生了杂种结构,该结构造成了量子的发光量高达33%。载体乘积被视为量子产率中的阶梯状增强。对可见光发射的分析表明,发射的大部分源自表面状态,而不是由于量子点核心内的重组而引起的。表面官能团的作用在确定光学特性中的量子确定性上是主要的。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
描述将保留和共享项目的哪些科学数据,并为该决定提供理由。上述科学数据类型将根据存储库要求与协议和元数据共享,以便其他研究人员可以再现它们和/或产生新的假设。将生成的文件类型包括但不限于 *.docs, *.xls, *.pdf, *.cdx, *.mol)。具体来说,化学结构,合成工作流和分析化学将被上传为PDF文件。药物和分析化学测量将在电子表格和图表上进行处理和共享。用于组织病理学和免疫组织化学(IHC)实验,我们将保留图像和过程,并总结电子表格和图表上的数据。PET成像将作为PET/CT图像共享。C.元数据,其他相关数据和相关文档:
本出版物是ICTAC工作组“热化学” 1期间1997年至1998年期间努力的结果。它涉及用于量热法和差异疗法分析的参考材料(缩写形式:RM)。它代表了IUPAC致命的“物理化学测量和标准”制作的两个先前的文档的更新版本:第一个发表于1974年的Pure and Applied Chemistry [1],第二本书在书籍中,标题为“重新认可的参考材料,用于实现物理学属性的实现” [2]。量热法和差分热分析与涉及物理,化学和生物学过程的广泛科学和技术研究领域相关。量热法通常会产生高度可再现的结果,但是由于测量系统的校准故障,可能是无法降低的。校准是每项热分析研究的基本要求。需要在测量仪器指示的值与正确值之间建立定义定义的关系。通过量化产生的
极性区域是地球上最快的变暖场所。加速的冰川融化会导致养分的增加,例如金属氧化物(即铁和锰氧化物)进入周围环境,例如波特湾的海洋沉积物,乔治岛国王岛/伊斯兰国王25 de Mayo(西南极半岛)。微生物氧化物还原和相关的微生物群落在南极沉积物中的理解很少。在这里,我们通过对原位沉积物孔水的地球化学测量以及伴随16S rRNA测序的泥浆孵育实验进行了调查。脱母瘤属的成员是孵化中锰氧化锰和乙酸盐修正的主要响应者。与锰和/或乙酸盐利用相关的其他生物包括去硫纤维瘤,sva1033(脱硫素甲甲藻家族)和未分类的Arcobacteraceae。我们的数据表明,Desulfuromonadales的不同成员最活跃于有机型锰的降低中,从而提供了有力的证据,证明了它们与永久冷南极沉积物中锰减少的相关性。
分离是分析化学或化学测量科学的关键步骤,使复杂样品分解为单个成分。通过在空间或时间上分离这些组件,分离通过消除样品基质物种的干扰来提高分析精度。此功率也使净化成为可能进行进一步研究。此外,分离可以通过集中目标成分来扩大后续的分析方法。已建立和成熟的分离技术被广泛用于科学研究中,但是分析任务的复杂性日益复杂,需要先进的技术。这个主题藏品展示了这个不断发展的领域的趋势和特征。高级分离科学对于应对我们今天面临的挑战至关重要。为了反映这一点,我们策划了一个主题收藏,其中包含来自三个主要国家的五篇评论论文和八个研究论文:中国(10篇论文),日本(2篇论文)和美国(1篇论文)。主题分为三类:分离的高级材料,高级方法和潜在应用。讨论的晚期材料包括分子印刷聚合物,金属有机框架,多孔有机框架,纳米颗粒和纳米线。先进的方法涵盖了连字符技术,例如液相色谱串联质谱法,以及纳米颗粒辅助的超滤,阳离子表面活性剂辅助样品制备,磁性固相提取等。前瞻性应用从手性分离到选择性标记,重点是生物学和生物医学研究。这包括对除草剂残基,肽,蛋白质,代谢产物,对映异构体,单链DNA,信使RNA,细胞外囊泡,表观遗传修饰的组蛋白和质量限制样品的分析。两部值得注意的作品强调了分离科学的最新进展。用于捕获富含CPG的SSDNA的基于ZnO/Sio2 Core/shell纳米纤维设备的第一个报告。这在CPG部位的DNA甲基化分析中具有潜在的应用,这是早期癌症检测的有希望的诊断标记。第二次工作提出了一种蛋白质组学方法,用于定量分析雌二醇刺激下MCF-7细胞中表观遗传组蛋白的修饰。这项研究证明了了解雌激素暴露对肿瘤发生和乳腺癌进展的重要性。开发了一种基于氨基酸在细胞培养(SILAC)中稳定的同位素标记的新型定量蛋白质组学方法,用于分析雌激素暴露下MCF-7细胞中的组蛋白的翻译后修饰和蛋白质表达变化。该研究确定了49个组蛋白变异,有42个量化,揭示了两种与乳腺癌相关的差异表达蛋白。对470个组蛋白肽的分析,具有各种修饰,例如甲基化,乙酰化和磷酸化,表明150个差异表达。值得注意的是,组蛋白H10和H2AV影响了核小体结构和基因激活。在雌激素受体(ER)激活后,Kat7的募集可能会影响特定部位的H4乙酰化。此外,HDAC2的表达和核总质转运对于调节组蛋白乙酰化至关重要。这项工作强调了基于LC-MS/MS的定量蛋白质组学在理解组蛋白修饰的生理作用方面的力量。