摘要:太阳能光伏和风力涡轮机等可再生能源技术的部署因其间歇性而对电网稳定性提出了挑战,因此需要创新的存储解决方案。我们展示了一种基于金属氢化物的混合电化学系统,该系统使固体氧化物燃料电池能够在燃料电池模式和电池模式下运行,从而实现不间断发电。在燃料电池模式下,该装置充当传统燃料电池,将燃料中储存的化学能转化为电能。在电池模式下,阳极附近的金属氢化物释放氢气并快速响应燃料供应中断或电力需求激增。这里展示的概念是一种有前途的方法,可以为未来平衡电网的电力供需提供强大而经济的解决方案。
叶绿素 (Chl) 的通用名称是一类环状四吡咯,是自然界中最丰富的色素,甚至从外太空也能看到。这种色素在光合作用中起着关键作用。光合作用是一种代谢过程,通过将二氧化碳固定为碳水化合物,将与太阳辐射相关的能量转化为化学能,为整个生物圈提供能量。[1] 叶绿素参与光合作用的三大反应,即 i) 吸收光辐射,充当光收集复合体中的天线,ii) 将激发能转移到所谓的反应中心蛋白,iii) 完成光合膜上的光诱导初级电荷分离。真核生物和细菌中都有光合生物,它们的光合器官差异很大(图 1)。[2]
技术说明燃料电池有效地将燃料(例如清洁氢)的化学能转换为电力,并且是实现可持续和公平的清洁能源未来的全面解决方案组合的重要组成部分。如图5.1所示,燃料电池可以将广泛的燃料和原料转换为电能,并以热和水作为额外的共同点。它们可用于跨多个部门的各种应用,包括运输(道路和越野车,铁路,海洋,航空),主要和备用固定功率(用于行业,数据中心,商业/住宅建筑)以及用于电网的长期储能存储。此外,燃料电池技术可用于加热和发电的组合或创新的混合方法,例如三生(电力,热和氢)应用。
摘要:作为热化学能存储领域研究的一部分,本研究旨在调查奥地利三家不同纸浆和造纸厂的流化床反应器产生的三种粉煤灰样品作为热化学能 (TCES) 和 CO 2 存储材料的潜力。 通过不同的物理和化学分析技术分析了选定的样品,例如 X 射线荧光光谱 (XRF)、X 射线衍射 (XRD)、粒度分布 (PSD)、扫描电子显微镜 (SEM)、电感耦合等离子体原子发射光谱 (ICP-OES) 和不同气氛 (N 2 、CO 2 和 H 2 O/CO 2 ) 下的同步热分析 (STA)。 为了评估环境影响,还进行了浸出试验。 通过 XRF 分析验证了 CaO 作为 TCES 的有希望的候选者的含量,其范围为 25–63% (w/w)。 XRD 结果表明,所有粉煤灰样品中的 CaO 均以游离石灰(3-32%)、方解石(21-29%)和硅酸盐的形式存在。STA 结果表明,所有粉煤灰样品均能满足 TCES 的要求(即充电和放电)。所有样品都进行了三次循环稳定性测试,结果表明在前三个反应循环中转化率有所降低。根据 STA 结果,所检查样品的能量含量高达 504 kJ/kg。在 CO 2 /H 2 O 气氛中,由于这些样品中已经存在游离石灰(CaO),因此在第一次放电步骤中,两种粉煤灰样品可以释放更多的能量(~1090 kJ/kg)。基于直接法和干法,这些粉煤灰样品的 CO 2 储存容量在每吨粉煤灰 18 至 110 kg 之间。浸出试验表明,所有重金属均低于奥地利垃圾填埋条例的限值。可以说,通过 TCES 和 CO 2 封存来增值纸浆和造纸工业的粉煤灰是可行的。然而,仍需进行进一步的研究,例如循环稳定性改进、系统集成和生命周期评估 (LCA)。
本节使用的能量单位是英热单位 (BTU)、千瓦时 (kWh)、千卡和加仑。BTU 是在海平面将 1 磅水的温度升高 1 华氏度 (°F) 所需的热量。由于其他能量单位都可以转换为等效的 BTU,因此 BTU 被用作比较不同资源相关能耗的基础。kWh 是电能单位,1 kWh 约等于 3,413 BTU,其中考虑了初始转换损耗(即从一种能量,如化学能,转换为另一种能量,如机械能)和传输损耗。天然气消耗通常以立方英尺或千卡来表示;1 立方英尺天然气约等于 1,050 BTU,1 千卡代表 100,000 BTU。考虑到炼油过程中所消耗的能量,一加仑汽油/柴油分别相当于约 125,000/139,000 BTU。
电池将电能存储为化学能,并在需要时将其释放为电能。锂离子电池由一系列电化学电池组成,每个电池都有两个电极,正极和负极,浸入电解质中,中间有一个多孔隔板,使两个电极彼此电绝缘。放电期间,负极(阳极)的电化学反应将电子从每个锂原子中分离出来,留下带正电的锂离子。与电极接触的金属片使电子流过外部电路,产生电能。锂离子通过电解质和隔板迁移到正极(阴极)。充电期间,发生逆过程,锂离子和电子被充电电流驱动回阳极。为了提供电动汽车或电网蓄电池所需的电力和能量,电池组将大量电池单元组合成一个设备。
超级电容器被广泛视为最有前途的新兴储能装置之一,它将化学能转化为电能并储存起来。二维 (2D) 金属氧化物/氢氧化物 (TMOs/TMHs) 因其高理论比电容、丰富的电化学活性位点以及通过与石墨碳、导电聚合物等结合组装成分级结构而彻底改变了高性能超级电容器的设计。所实现的分级结构不仅可以克服使用单一材料的局限性,而且可以带来性能上的新突破。本文综述了 2D TMOs/TMHs 及其在分级结构中作为超级电容器材料的研究进展,包括超级电容器材料的演变、分级结构的配置、所调控的电性能以及存在的优缺点。最后,提出了与超级电容器材料发展相关的方向和挑战。
氢还可以用于燃料电池发电——燃料电池是一种通过一系列涉及氧气的反应将氢中的化学能转化为电能和热能的装置,副产品是水。燃料电池可以独立用于螺旋桨飞机(例如涡轮螺旋桨飞机)的推进。然而,考虑到燃料电池的功率密度限制,长途飞行和重载荷不太可能完全由燃料电池提供动力。5F 6 为了增加航程和有效载荷大小,燃料电池还可以用于混合电力推进系统,该系统配有氢燃烧燃气涡轮发动机。6F 7 在混合动力系统中,燃料电池在巡航飞行期间充当主要动力源,燃气涡轮机用于提供起飞和爬升的主要推力。混合动力系统的环境效益包括提高燃油效率、减少氮氧化物排放和尾迹形成。7F 8
光合作用是一种基本的生物学过程,是地球生命的基石,维持地球的生态系统并在全球碳循环中起关键作用。这种复杂的过程主要发生在植物,藻类和某些细菌中,将阳光转化为化学能,从二氧化碳和水中产生氧气和有机化合物。由浮游植物驱动的生物碳泵将碳从海面传输到更深的水域。当浮游植物死亡时,它们的有机物会沉入海底,有效地隔离了碳。这种自然机制强调了保护海洋生态系统并解决海洋酸化的重要性,这威胁了浮游植物种群。光合作用与全球碳循环之间的关系不仅对维持生命的维持至关重要,而且对于调节地球的气候和大气组成也至关重要(Alonso-Blanco等,2000)。
该ECOWAS绿色氢政策和战略框架是由2023年7月6日至7日在几内亚比索的比索举行的第90届Ecowas部长会议。该政策与同一日期采用的新Ecowas能源政策保持一致,这促进了可再生能源和能源效率的发展,尤其强调需要促进清洁能源,尤其是氢。清洁氢被公认为能够脱碳,运输,农业和动力部门。更具体地说,绿色氢是迄今为止确定的最环保氢的形式,它是一种有前途的解决方案,用于将各个部门脱碳化,这是由于其将可再生电能转换为清洁化学能的潜力,可以轻松替代传统的能源使用。绿色氢在世界上几个国家的中期脱碳策略中的重要地位是一个完美的例证。
