随着美国在 2050 年实现净零碳排放 (Kerry 2021),需要向可再生能源发电过渡。然而,高渗透率的可再生能源发电的可变性可能导致电力生产和输送不平衡。这些不平衡可以通过部署储能来避免。储能可以通过提高能源效率和减少温室气体排放为工业部门增加重大价值 (Mitali、Dhinakaran 和 Mohamad 2022;Kabeyi 和 Olanrewaju 2022)。预计未来几十年全球工业储能将增长 2.6 倍,从略高于 60 GWh 增长到 2030 年的 167 GWh (“储能大挑战:储能市场报告”2020)。灵活、集成和响应迅速的工业储能对于从化石燃料过渡到可再生能源至关重要。挑战在于平衡储能能力与特定工业应用的电力和能源需求。储能技术可根据储能形式进行分类。最常见的形式包括热能、化学能、电化学能和机械能存储技术 (Rahman et al. 2020)。最合适的存储技术将取决于工业应用的独特能源需求。
氮对所有生物都必不可少。世界上近 98% 的氮存在于岩石、土壤和沉积物的化学结构中的固体地球中。其余的氮则通过大气、海洋、湖泊、溪流、植物和动物的动态循环进行流动。土壤和沉积物中的少量氮也会进入这个复杂的循环。分子氮 (N 2 ) 是一种无色无味的气体,占我们大气的 78%。每平方米地球表面有近 8 公吨的氮。分子氮是稳定的,将其转化为其他化合物需要相当大的能量。一道闪电就能提供足够的能量来完成这项工作,使空气中的一些氮和氧形成氮氧化物。植物的光合能和土壤微生物的化学能也可以将氮转化为其他化学形式。所有这些自然过程都发生在我们环境中的氮循环中。除了分子氮之外,微量的氮氧化物、硝酸蒸汽、气态氨、颗粒硝酸盐和铵化合物以及有机氮也在大气中循环。在美国,人类活动产生的氮贡献
海水电池是一种独特的储能系统,可直接利用海水作为电能和化学能的转换源,实现可持续的可再生能源储存。该技术是一种可持续且经济高效的锂离子电池替代品,其优势在于海水中含有丰富的钠作为电荷转移离子。近几年来,研究显著改善和改进了这种电池的性能。然而,该技术的基本限制仍有待在未来的研究中克服,以使该方法更加可行。缺点包括阳极材料降解或膜在盐水中的稳定性有限,导致电化学性能低和库仑效率低。海水电池的使用范围超过了储能应用。海水电池运行中固有的离子电化学固定也是直接海水淡化的有效机制。高充电/放电效率和能量回收使海水电池成为一种有吸引力的水修复技术。本文回顾了海水电池组件以及用于评估其储能和海水淡化性能的参数。本文还介绍了克服稳定性问题和低电压效率的方法。最后,概述了潜在的应用,特别是在海水淡化技术方面。
简介 美国海军研究办公室项目官员 Ryan Hoffman 美国海军研究办公室的定向能武器 (DEW) 项目是为了应对对手快速发展和日益增长的定向能技术威胁而发起的。定向能武器被定义为能够将化学能或电能转换为辐射能并将其聚焦在目标上的电磁系统,从而造成物理伤害,削弱、抵消、击败或摧毁对手的能力。美国海军使用 HPM 在电磁机动战和综合防御领域为美军在所有军事行动(包括力量投射和综合防御任务)中获得和维持战术、战役和战略优势。可靠、反复地在远距离聚焦辐射能,具有精确和可控的效果,同时产生可测量的物理伤害的能力是 DEW 系统有效性的衡量标准。为了应对定向能武器的进步,ONR HPM 计划包括一系列计划和研究项目,旨在为海军提供先进 HPM 技术、系统和技术的手段和方法提供科学和工程基础,从而打造出在战场上高度有效的新型武器。目标是成为定向能武器系统最有效的管理者。
对这两个问题的实质性解决方案。3随着纳米技术的发展,高级氧化过程(AOP)有些克服了这些问题。4,5 AOP是最环保的技术,用于去除由于其化学稳定性而无法通过传统方法处理的顽固有机污染物。6,7水和废水处理的概念主要在1980年发现。8在AOP过程中,产生活性氧(ROS),包括单线氧(O),臭氧(O 3),过氧化氢(H 2 O 2),羟基自由基(OH C)等物种。与其他氧化剂(如O,O 3和H 2 O 2)相比,其中OH C是一种高度氧化剂,具有2.8 eV的高度氧化剂,具有2.8 eV且不稳定,其氧化潜力分别为1.67、2.07和1.77 eV。10个光催化剂是产生强氧化剂的材料,即,o,o 3和oh c。11在AOPS中,Pho-Tocatalysts或半导体材料可以将太阳能直接转换为化学能,这是可再生能源生产和环境补救措施的一种非常便捷的方法。12,13光催化降解近年来引起了很大的关注,因为它具有稳定,清洁和无毒的方向以减少环境污染。14,15普通
将阳光转化为化学能,即光合作用,是地球上生命的主要能源。基于从电子到细胞量表的多尺度计算模型的可视化形式,以fulldome show earl the planet earth的诞生的摘录形式提出。这种可访问的视觉叙述显示了外行观众,包括孩子,如何通过一系列蛋白质捕获,转换和存储阳光的能量,从而使活细胞捕获。可视化是生物物理学家,可视化科学家和艺术家之间多年合作的结果,而这反过来又基于在结构和功能建模上进行了长达十年的实验计算合作,从而产生了对细菌性生物概念性细菌性生物概要细胞器的原子细节描述。该项目需要进行的软件进步导致了大量的性能和功能进步,包括硬件加速的电影射线跟踪和实例可视化,以进行有效的单元格式建模。所描述的能量转换步骤具有从电子到单元水平的功能整合,涵盖了近12个数量级的时间尺度。此原子细节描述独特地使人对人类最早的故事之一的现代重述 - 光与生命之间的相互作用。
摘要:随着航空中的发展技术,向更多电气系统的过渡日益增加。因此,对电池开发的研究加速了。如今,由于其能量重量比,锂离子(锂离子)电池更为广泛,例如与其他电池技术相比,不工作时的自我释放率较低。电池将储存的化学能转换为电能,并且由于化学反应而释放了热量。释放的热量会对电池的寿命产生负面影响,充电/放电时间和电池输出电压。必须正确建模电池以查看这些负面影响并及时干预。以这种方式,电池中可能发生的负面情况可以在正确的时间进行干预,而不会发生任何事件。在这项研究中,无人机(UAV)由锂离子电池提供动力。使用电气等效电路在MATLAB/SIMULINK环境中进行模拟。考虑到温度,充电状态(SOC),细胞动力学和操作功能,创建了一个详细的模型。要估计电池的健康状态(SOH),必须知道电阻值。借助仿真模型获得了锂离子电池等效电路中的电阻和容量值。因此,可以通过获得的结果准确预测锂离子电池的SOH。关键词:锂离子,无人机,电池模型,仿真。
组装体的组装不仅由光活性分子本身的分子结构决定,还由分子空间排列方式决定。13 – 15具有明确堆积和分子间相互作用的有机超分子晶体是研究超分子组织及其控制和操作的理想体系。16 – 18因此,如何提供具有理想光响应行为的有机超分子晶体引起了化学和材料科学的广泛关注。分子间[2 + 2]光环加成反应,特别是固态的光二聚化,极易受到分子空间排列的影响。预计只有当反应性p-二聚体中的两个单体尽可能平行排列,并且它们的接近度在4.2 ˚A以内时才会发生。19 – 21此类拓扑化学反应具有迷人的能量转移,能够快速有效地将光转化为化学能和动能。 18,22一方面,晶格原子的空间运动会在周围的p-二聚体中产生局部应力,使晶体发生变形。23,24例如,Naumov和Vittal报道了基于[2+2]光环加成反应的智能分子晶体,实现了弯曲、跳跃、滚动、光突显等多种光机械动态行为。25-27另一方面,
本文提出了使用硝酸铵(HAN)推进剂进行航天施用的燃烧室的初步研究。燃烧室由两个部分组成,即推力室和收敛性(C-D)喷嘴。燃烧室的设计非常重要,因为在此封闭体积中释放的推进剂中的化学能,即推力室并通过C-D喷嘴部分扩展。因此,必须设计腔室,以提供推进剂反应和释放最大可用能量的必要空间,并且还应防止以热的形式损失能量。应最佳设计C-D喷嘴,以允许将焓的最大转化为动能。因此,推力室和C-D喷嘴以最佳尺寸设计,用于释放热量,以将HAN推进剂的燃烧转换为基于HAN的单核粉推进器的排气速度。在这项工作中,燃烧室,即推力室和C-D喷嘴在16 bar的压力下设计,以产生11 N的推力。进行了11 N分析以显示以11 N推力的燃烧室的压力和温度变化,用于航天器的16 bar的16 bar压力和腔室压力。从分析结果中发现,han+甲醇+硝酸铵+水的推进剂组合的单opellogent发动机适合于态度和轨道控制系统(AOCS)推进器的设计。
I. 引言燃料电池(FC)是一种将氢化学能转化为电能的装置,可用于从移动和固定电源系统到便携式设备等各种应用。FC 的工作原理早在 1839 年就被发现,但直到最近二十年,该领域的研究活动才显着增加,提高了 FC 的灵活性和可靠性 [1]。促使 FC 发展的最重要因素之一是化石燃料燃烧对环境的严重影响。考虑到可以利用可再生能源(太阳能、风能、地热能等)通过水电解生产氢气,聚合物电解质膜 (PEM) 燃料电池成为减少对化石燃料依赖的最清洁和最有前途的替代品之一 [2]。该领域的改进需要跨学科工作和许多领域新技术的开发。最重要的问题之一与开发系统地处理干扰和模型不确定性的稳健控制策略有关。例如,在可变负载跟踪期间,针对电池内部燃料-氧化剂协调问题的有效控制算法可以避免瞬时功率下降和电池膜的不可逆损坏。然而,从控制的角度来看,燃料电池堆代表着一项重大挑战,因为它们相关的子系统存在相互冲突的控制目标和复杂的动态[3]。例如,九阶非线性模型用于描述基于氢-空气供给堆的发电系统。在这种模型中,状态相互作用通常通过以下方式建模