Qubit读数是任何量子信息处理器中必不可少的元素。在这项工作中,我们在实验中证明了transmon和Polarmon模式之间的非扰动交叉kerr耦合底,该模式可以改善量子非态度(QND)读数,用于超导速度。新机制使用与分散近似中的标准QND量子读数相同的实验技术,但由于其非扰动性质,它最大化了速度,单发忠诚度和读取的QND属性。此外,它可以最大程度地减少不需要的衰减通道的影响,例如purcell效应。我们观察到短50 ns脉冲的单次读数保真度为97.4%,并且对长度测量脉冲的QND度为99%,并具有重复的单发读数。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
引用Møller,K.T。 和Humphries,T.D。 和Berger,A。和Paskevicius,M。和Buckley,C.E。 2021。 使用石灰石的热化学能量存储系统开发。 化学工程杂志的进步。 8。http://doi.org/10.1016/j.ceja.2021.100168引用Møller,K.T。和Humphries,T.D。和Berger,A。和Paskevicius,M。和Buckley,C.E。2021。使用石灰石的热化学能量存储系统开发。化学工程杂志的进步。8。http://doi.org/10.1016/j.ceja.2021.100168
(a)节省能源或水的行动,表现出势能或节水,并促进能源效率,这将无法引起室内或室外浓度的显着变化。这些行动可能涉及对个人(例如建筑商,所有者,顾问,制造商和设计师),组织(例如公用事业)和政府(例如州,地方和部落)的财务和技术援助。涵盖的动作包括但不限于气候化(例如绝缘和更换门窗);降低恒温器设置;将计时器放置在热水热水器上;安装或更换节能照明,低流水管固定装置(例如水龙头,厕所和淋浴喷头),供暖,通风,空调系统以及电器;滴灌系统的安装;发电机效率和设备效率评级的提高;车辆和运输的效率提高(例如机队的更换);电源存储(例如飞轮和电池,通常不到10兆瓦);运输管理系统(例如交通信号控制系统,汽车导航,速度摄像头和自动板号识别);开发节能制造,工业或建筑实践;以及小规模的能源效率和保护研究与发展以及小规模的试点项目。涵盖的行动包括建筑物的翻新或新结构,只要它们发生在先前受到干扰或发达的地区。涵盖的行动可能涉及商业,住宅,农业,学术,机构或工业部门。涵盖的行动不包括规则制定,标准安排或拟议的DOE立法,除了本附录B5.1(b)中列出的那些行动。(b)涵盖的行动包括为消费产品和工业设备建立节能标准的规则制定,但前提是行动不会:(1)有可能导致制造基础设施的重大变化(例如,建造具有相当相关的地面干扰的新制造工厂); (2)涉及有关可用资源(例如稀有或有限原材料)的替代用途的重大未解决的冲突; (3)有可能导致处置材料的处置显着增加,这对人类健康和环境带来了重大风险(例如RCRA危险废物);或(4)有可能导致州或地区的能源消耗大幅增加。
日益严重的环境问题与能源危机,促使全球掀起碳中和战略,从而推动了风能、太阳能、燃料电池等新能源转换技术以及新能源存储技术尤其是电化学能源装置的发展。其中,超级电容器(Wei et al.,2017)、锂/钾/锌/钠/镁离子/空气电池(Wei et al.,2020)和燃料电池(Wei et al.,2014)作为下一代先进电源,因其能量密度高、规模灵活性强、环境友好等特点,引起了广泛研究。为加速电化学能源转换与存储产业的发展,《Frontiers in Chemistry》杂志提出了“先进电化学能源装置”的研究课题,邀请了多所知名大学的专家、研究人员分享该领域的发展前景或进展。本研究课题共包含4篇论文,其中包括3篇研究论文和1篇综述,代表了当前先进电化学能源装置的热门研究方向,作者对这些技术给出了深刻的见解。
GraphDiyne(GDY)的研究在出生后的头十年中经历了快速增长。作为一种新的二维原子晶体,GDY具有由SP和SP 2杂交碳原子组成的独特结构,并且对科学家表现出许多前所未有的内在特性。由于GDY的固有特征,在广泛的研究领域中发现了一些新现象和特性。gdy在基本和应用科学方面取得了重大突破,形成了创新的科学概念,并取得了巨大的成就。在这些领域中,电化学能源存储和转换是基本应用研究的两个重要且令人印象深刻的领域。本综述着重于将GDY用作电化学能源存储和转换的高级电化学接口。它首先引入了GDY作为电化学接口的优势和固有的兼容性。然后,GDY在电化学存储和转换方面的最新成就得到了评论,我们可以从中欣赏GDY作为交替和创新电化学界面的重要材料的固有优势。最后,讨论了对电化学能源存储和转换的GDY界面的挑战和进一步观点的新见解,旨在促使深入研究及其在实际应用中的表现。
摘要:作为热化学能存储领域研究的一部分,本研究旨在调查奥地利三家不同纸浆和造纸厂的流化床反应器产生的三种粉煤灰样品作为热化学能 (TCES) 和 CO 2 存储材料的潜力。 通过不同的物理和化学分析技术分析了选定的样品,例如 X 射线荧光光谱 (XRF)、X 射线衍射 (XRD)、粒度分布 (PSD)、扫描电子显微镜 (SEM)、电感耦合等离子体原子发射光谱 (ICP-OES) 和不同气氛 (N 2 、CO 2 和 H 2 O/CO 2 ) 下的同步热分析 (STA)。 为了评估环境影响,还进行了浸出试验。 通过 XRF 分析验证了 CaO 作为 TCES 的有希望的候选者的含量,其范围为 25–63% (w/w)。 XRD 结果表明,所有粉煤灰样品中的 CaO 均以游离石灰(3-32%)、方解石(21-29%)和硅酸盐的形式存在。STA 结果表明,所有粉煤灰样品均能满足 TCES 的要求(即充电和放电)。所有样品都进行了三次循环稳定性测试,结果表明在前三个反应循环中转化率有所降低。根据 STA 结果,所检查样品的能量含量高达 504 kJ/kg。在 CO 2 /H 2 O 气氛中,由于这些样品中已经存在游离石灰(CaO),因此在第一次放电步骤中,两种粉煤灰样品可以释放更多的能量(~1090 kJ/kg)。基于直接法和干法,这些粉煤灰样品的 CO 2 储存容量在每吨粉煤灰 18 至 110 kg 之间。浸出试验表明,所有重金属均低于奥地利垃圾填埋条例的限值。可以说,通过 TCES 和 CO 2 封存来增值纸浆和造纸工业的粉煤灰是可行的。然而,仍需进行进一步的研究,例如循环稳定性改进、系统集成和生命周期评估 (LCA)。