摘要。将过渡金属复合物用作光催化剂,允许以杰出的方式进行多种有机转化的性能,不仅以高收益率,TOF和选择性值为特征,而且还通过调节和提供对新的分子结构的访问,而没有它们,这些分子结构将是困难的,即使不是不可能的。然而,关于这些光催化剂使用的最大问题之一依赖于与它们从反应介质中隔离相关的困难,并在化学过程结束后再生。以上,除了污染反应产物并需要乏味的纯化过程外,还促使催化剂不可避免地损失,直接影响其可回收性。此外,从经济和环境的角度来看,这种情况会导致负面结果,因为过渡金属络合物通常是昂贵的材料,并且它们不成功的恢复可能导致泄漏到环境中。
生物分子冷凝物,Banani等人首先创造的术语。仅6年前(Banani等人2017),是纳米或微观,细胞内或细胞外组件,通常通过液态液相分离形成,并且具有选择性浓缩或隔离生物分子的能力,主要是蛋白质和核酸(Emenecker等人。 2021; Mitrea等。 2022; Mountourakis等。 2023)。 我们所知道的生物分子冷凝物之间存在显着的组成和结构多样性,范围从经典的无膜无ga nelles,例如核仁和吡啶样型到由相同类型的蛋白质分子制成的单分量冷凝物。 生物分子冷凝物的这种多样性,以及它们在生活的所有王国中的普遍发生,以及对大量发育和环境sig nals的反应,表明蛋白质和核酸的凝结是生物和避相化学的关键物理化学过程。 在过去几年中,对研究生物裂块冷凝水的浓厚兴趣并没有绕过植物生物学,因此在植物细胞中释放有关此热门话题的第一个焦点问题是及时的。2021; Mitrea等。2022; Mountourakis等。2023)。我们所知道的生物分子冷凝物之间存在显着的组成和结构多样性,范围从经典的无膜无ga nelles,例如核仁和吡啶样型到由相同类型的蛋白质分子制成的单分量冷凝物。生物分子冷凝物的这种多样性,以及它们在生活的所有王国中的普遍发生,以及对大量发育和环境sig nals的反应,表明蛋白质和核酸的凝结是生物和避相化学的关键物理化学过程。在过去几年中,对研究生物裂块冷凝水的浓厚兴趣并没有绕过植物生物学,因此在植物细胞中释放有关此热门话题的第一个焦点问题是及时的。
1. 学生将解释腐蚀背后的化学过程,包括氧化还原反应,并找出加速水下环境腐蚀的因素。 2. 学生将分析和比较水下机器人中使用的不同材料的特性,包括它们的耐腐蚀性、强度和特定应用的适用性。 3. 学生将应用与反应速率和材料科学相关的科学原理来设计一种水下机器人,以最大限度地减少腐蚀并在海洋环境中有效运行。 4. 学生将设计和制作水下机器人的原型,考虑材料选择、耐用性和在各种水下条件下的性能。 5. 学生将评估他们和同学的设计,提供建设性的反馈,并反思他们对腐蚀和材料科学的理解如何影响他们的工程解决方案。
• 学生高级计算研究体验 (ACRES) • 健康科学领域大学生生物医学研究 (BRUSH) • 神经科学博士学位桥梁计划 (BPNP Endure) • 搭建桥梁 • 社区和未来地球科学家 (GeoCaFES) • 可持续化学和化学过程跨学科培训 (SCCP) • 发展科学招聘和保留计划 (DSRRP) • 工程暑期本科生研究体验 (EnSURE) • 昆虫学研究和推广奖学金 (EROF) • 大湖生物能源研究中心暑期本科生研究计划 (GLBRC SURP) • 高中荣誉科学/数学/工程计划 (HSHSP) • 本科生物理与天文学研究体验 • 本科生植物基因组学研究体验 • 本科生结构和功能神经生物学研究体验 (ASPET SURF) • 暑期研究机会计划 (SROP)
Yves TP、S. Mercier-Blais、JA Harrison、C. Soued、P. del Giorgio、A. Harby、J. Alm、V. Chanudet 和 R. Nahas。2021 年。“评估水库生物源温室气体排放的新建模框架:G-res 工具。”环境建模与软件 143:105117。https://doi.org/10.1016/j.envsoft.2021.105117。Prairie,YT、J. Alm、J. Beaulieu 等人。2018 年。“淡水水库的温室气体排放:大气看到了什么?”生态系统 21:1058–1071。 https://doi.org/10.1007/s10021-017-0198-9 。世界银行。2017 年。生物地球化学过程引起的水库温室气体。华盛顿特区:世界银行。https://documents1.worldbank.org/curated/en/739881515751628436/pdf/Greenhouse-gases-from-reservoirs-caused-by-biogeochemical-processes.pdf 。
摘要本文研究了在高中STEM课程中可持续性教育的整合,重点是可再生能源技术和绿色化学。强调向学生介绍这些关键领域的重要性,该论文概述了有效的教学方法,教育策略和实际应用,以增强学生对可持续实践的理解。关键发现表明,教学可再生能源促进了应对气候变化所需的意识和技能,而绿色化学教育则促进了更安全,更有效的化学过程的设计。本文以对教育者和政策制定者的建议结束,主张课程发展,教师专业发展和跨学科教学方法。将这些学科整合到高中教育中,使学生能够被告知,负责任的公民,有能力为可持续的未来做出贡献。
当细胞受到低 LET 辐射(60 Co 约为 0.3 keV/µm)时,大多数 DNA 损伤不是由辐射场与 DNA 的直接相互作用引起的,而是由辐解后的化学反应引起的。因此,辐射化学对于理解电离辐射造成的生物损伤的潜在机制至关重要。蒙特卡洛径迹结构 (MCTS) 代码可以详细模拟细胞等介质中的粒子径迹。几种 MCTS 代码已经进一步开发,具有模拟水的辐解和随后的非均相化学的能力。最初的 MCTS 模拟使用纯水作为目标,并叠加 DNA 几何形状来表征物理相互作用(Charlton 1986)。现在,MCTS 代码已经变得更加复杂,可以将电离辐射的物理化学过程与 DNA 几何模型相结合。
农业 4 捆绑式堆肥生产和土壤应用 4 碳矿化 4 牧场堆肥添加 4 饲料添加剂 4 改进灌溉管理 4 粪便甲烷消化器 4 氮管理 5 水稻减排 5 固体废物分类 5 可持续农业 5 碳捕获和储存 6 碳捕获和提高石油采收率 6 混凝土中的碳捕获 6 塑料中的碳捕获 6 化学过程 6 己二酸生产中的 N2O 破坏 6 硝酸生产中的 N2O 破坏 6 环氧丙烷生产 7 SF6 替代 7 ** 制冷剂相关项目类型 ** 7 先进制冷剂 7 HFC 制冷剂回收 7 泡沫生产中的 HFC 替代 7 HFC23 破坏 7 臭氧消耗物质回收和破坏 8 制冷剂泄漏检测 8 林业和土地利用 8造林/再造林 8 避免森林转化 8
合金{参见 Hastelloy B-2;超合金) 电导率,29-30 热导率,29-30 KBI40, 58, 59, 63, 65, 68 钼, 4, 8, 9-16 Nb-Ti, 76, 77, 78 镍, 108 铌, 50-69, 75, 76 Ta-2.5W, 65 Ta-Nb, 108 钽, 46, 50-69 钛, HI 钨, 95, 96, 99, 102 铝 压铸工具, 10-11 电解, 71, 72, 74 超导性, 77 仲钨酸铵 (APT) 转化, 84-85 ANSI/ASMEB31.3, 107 应用(另见个别材料) 航空航天,14,18 化学过程工业,106-114 电子,70-81 高温,67 工业,18-27,50-69 导弹,14 核,12-13,15-16,18 外科手术,167-168 水环境,腐蚀,58-61 ASME 锅炉和压力容器规范,第 VII 节,107