图 3 ReRAM 特性的电极依赖性:(a) 50×50 μm 2 ,(b) 200×200 μm 2 。 5.结论我们利用 TiO x 作为电阻变化层制作了 ReRAM,并评估了其特性。在本次创建的条件下,没有观察到复位操作。这被认为是因为在复位操作过程中,由于氧气的释放,灯丝没有断裂。比较电极尺寸,50×50 μm2 的较小元件与 200×200 μm2 的元件相比,可获得更优异的特性。这被认为表明了氧化退火过程中的尺寸依赖性。 6.参考文献 [1] A. Hardtdegen 等,IEEE Transactions on Electron Devices,第 65 卷,第 8 期,第 3229-3236 页 (2018) [2] Takeo Ninomiya,基于氧化物材料设计和可靠性建模的电阻式存储器量产,名古屋大学研究生院博士论文 (2016) [3] D.Carta 等,ACS Appl. Mater. Interfaces,第 19605-19611 页 (2016) [4] D. Acharyya 等,微电子可靠性。54,第 541-560 页 (2014)。
1。论文介绍了题为“关于绿色化学的原理和作用的综述,以减少对人类健康的相关影响,并实际上消除了由SRM University,Modinagar(2010)组织的NCGC-10中的NCGC-10的污染。2。撰写的题为“电子学习:趋势和资源基础”的论文由SRM University,Modinagar于2012年4月7日组织。3。在GTER-2012中呈现的题为“有毒重金属离子的Q进行了Q的分离”,该论文于2012年5月11日至13日由Haridwar的Gurukul Kangri University组织,2012年5月11日至13日。4。论文介绍了标题为“纳米医学:新时代的恩赐”,2013年Icnano-2013,由安萨尔大学(Ansal University),古尔冈(Gurgaon)于2013年7月25日组织。5。刊物的论文题为“基于询问的“基于询问”的学习,由电子学习支持:概述:ICRTC-13的概述”,由SRM大学于2013年10月4日至5日由SRM University,Modinagar组织。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
新学年开始的行为准则为了帮助家庭应对安全返校的复杂前景,本学校为所有家长准备了一份可能的建议清单。老师们将帮助孩子们思考为了每个人的安全而遵守的规则的意义,帮助他们增强意识和责任感。但是,家长们的贡献也至关重要:我们要求你们每天监督并与学校合作,教导你们的孩子遵守安全规则。学校重新开学并长期开放很重要,因为孩子们需要学校来成长;每个人都需要采取谨慎和负责任的行为,以便传染病不会再次爆发并且不会蔓延到学校。儿童、家长或其他成年人在初中就读的前提条件是:
人为、自然和环境性质的紧急情况造成的损害。在过去的 35-40 年里,他们的数量几乎增加了 3 倍。人为事故和灾害造成的物质损失约占国内生产总值的3%。人为突发事件的主要原因,一方面是固定生产资产的恶化和物质技术供应的严重恶化,另一方面是生产和技术纪律水平的急剧下降。 、设备、机构和机器运行过程中严重违反安全要求,不遵守预防性检查和定期维护的监管要求。我国的经济对象目前有12000多个(超过四分之一)存在潜在危险;超过 5000 万人居住在其影响范围内。经济不稳定和通货膨胀导致大量观测和实验室控制站破旧和关闭,无法全面开展监测、预报和预防自然和环境突发事件的活动。这反过来又导致地震、洪水、泥石流、山体滑坡以及其他自然和环境灾害和灾难造成的受害者人数增加。
本报告总结了美国国家标准与技术研究所 (NIST) 信息技术实验室应用与计算科学部最近的技术工作。第一部分(概述)概述了该部门的活动,包括去年技术成就的亮点。第二部分(特色)详细介绍了今年特别值得注意的八个项目。接下来的第三部分(项目摘要)简要概述了过去一年中所有活跃的技术项目。第四部分(活动数据)列出了部门工作人员参与的出版物、技术讲座和其他专业活动。本文件涵盖的报告期为 2013 年 10 月至 2014 年 12 月。如需更多信息,请联系 Ronald F. Boisvert,邮寄地址 8910,NIST,马里兰州盖瑟斯堡 20899-8910,电话 301-975-3812,电子邮件 boisvert@nist.gov,或访问该部门的网站
本报告总结了 NIST 信息技术实验室应用与计算科学部的技术工作。第一部分(概述)概述了该部门的活动,包括去年技术成就的亮点。第二部分(特点)详细介绍了今年特别值得注意的十个项目。接下来是第三部分(项目摘要),简要概述了过去一年中活跃的所有技术项目。第四部分(活动数据)列出了部门工作人员参与的出版物、技术讲座和其他专业活动。本文件涵盖的报告期为 2011 年 10 月至 2012 年 12 月。如需更多信息,请联系 Ronald F. Boisvert,邮寄地址:8910,NIST,Gaithersburg,MD 20899-8910,电话:301-975-3812,电子邮件:boisvert@nist.gov,或访问该部门的网站:http://www.nist.gov/itl/math/index.cfm。
本报告总结了 NIST 信息技术实验室应用与计算科学部的技术工作。第一部分(概述)概述了该部门的活动,包括去年技术成就的亮点。第二部分(特点)详细介绍了今年特别值得注意的十个项目。接下来是第三部分(项目摘要),简要概述了过去一年中活跃的所有技术项目。第四部分(活动数据)列出了部门工作人员参与的出版物、技术讲座和其他专业活动。本文件涵盖的报告期为 2011 年 10 月至 2012 年 12 月。如需更多信息,请联系 Ronald F. Boisvert,邮寄地址:8910,NIST,Gaithersburg,MD 20899-8910,电话:301-975-3812,电子邮件:boisvert@nist.gov,或访问该部门的网站:http://www.nist.gov/itl/math/index.cfm。