物质由一种或多种元素组成。在正常条件下,自然界中除了稀有气体外,没有其他元素以独立原子的形式存在。然而,一组原子被发现以具有特征性质的一种物质形式存在。这样的原子组被称为分子。显然,一定有某种力将这些组成原子保持在分子中。将不同化学物质中的各种成分(原子、离子等)保持在一起的吸引力称为化学键。由于化合物的形成是各种元素的原子以不同方式结合的结果,因此它引发了许多问题。为什么原子会结合?为什么只有某些组合是可能的?为什么有些原子会结合而其他某些原子不会结合?为什么分子具有确定的形状?为了回答这些问题,人们不时提出了不同的理论和概念。这些理论和概念包括 Kössel-Lewis 方法、价壳电子对排斥 (VSEPR) 理论、价键 (VB) 理论和分子轨道 (MO) 理论。各种价态理论的演变和对化学键性质的解释与对原子结构、元素电子排布和周期表的理解的发展密切相关。每个系统都趋向于更稳定,而键合是自然界降低系统能量以达到稳定的方式。
原子探针断层扫描通常用于以原子分辨率表征固体中的元素分布。本文回顾并讨论了该技术局部探测化学键的潜力。两个过程表征了激光辅助场发射中的键断裂,分子离子概率 (PMI),即分子离子蒸发而不是单个(原子)离子的概率,以及多重事件概率 (PME),即在激光或电压脉冲激发下相关场蒸发多个碎片。本文证明了可以根据键断裂(即 PME 和 PMI 值)清楚地区分具有金属键、共价键和亚价键的固体。这些发现为理解和设计先进材料开辟了新途径,因为它们允许在纳米尺度上量化固体中的键,正如将在几个示例中展示的那样。这些可能性甚至可以证明将当前方法称为键合探针断层扫描 (BPT)。
玻璃和相应的晶体通常具有相似的局部顺序和可比的特性。我们通过量化化学键来解释这些相似之处。使用量子化学键合描述符(电子在原子之间转移和共享的电子),我们证明在诸如SIO 2,GESE 2和GESE之类的普通玻璃中,玻璃中的化学键合,相应的晶体几乎没有差异。相反,对于仅在图的不同区域中发现的晶体,由两个粘结描述符跨越,获得了非常规的玻璃,在局部顺序和光学特性上都不同。该区域包含Gete,SB 2 TE 3和GESB 2 TE 4的晶体,这些晶体采用了元键合。因此,我们可以通过识别那些采用特殊键的晶体来设计非常规的玻璃。
周期性表电子构型和周期表,周期性,原子半径的群体趋势。电离能,电离,电离电位,电子亲和力,氧化电位,电极电位的趋势。磁性特性,para和diamagnetisms。S和P块中的化学键合有效原子数和屏蔽常数化学键的类型。离子键,共价键。杂交及其应用的概念。化学键合的理论。价键理论和分子轨道理论。晶格能量和离子化合物的Haber周期,相关数值。水溶液酸基碱反应,强弱酸和碱,净离子方程的化学反应,用于酸碱相互作用。降水反应,k SP值。氧化还原反应,平衡氧化还原方程。卤素反应,羟基及其性质间外化合物的一般特性。零组元素的零组一般特性,Zenon氦化合物的制备性能。
一个多世纪以来,朗缪尔对等价性的理解,即“两个具有相同数量价电子的分子实体具有相似的化学性质” [1],对合理化分子结构的基本原理和等价体系的反应性,以及推动新型合成化学和现代化学键概念发挥了重要作用。 [2] 人们特别致力于将第十四主族元素锗 (Ge) 和硅 (Si) 的化学性质与第二行类似的碳 (C) 化学性质进行比较。 [3] 尽管朗缪尔的概念设想等价体系的分子结构和化学键应该相同,但涉及第十四主族元素的等价体系的实际分子几何形状可能存在显著差异。 因此,由于多键合、较重主族物质的化学性质具有不寻常的化学性质、结构以及通常奇特的化学键,它们引起了广泛的兴趣。 [4] 在发现这种化合物之前,人们几十年来一直怀疑较重的第十四主族元素(Si、Ge、Sn、Pb)中是否存在双键和三键。
•我们正在使用蛋白质口袋的创新表示,这些信息利用3D空间中的原子连通性和空间距离•配体表示:分子图:具有原子作为节点和化学键的分子图
• 分解:化学键断裂。 • 蒸发:随着温度升高挥发性物质损失。 • 还原:样品与还原性气体(氢气、氨气等)相互作用。 • 解吸:材料表面/孔隙中水分/气体/溶剂损失
摘要:锕系化合物(分子复合物和材料)中化学键的性质在许多方面仍然难以捉摸。彻底分析它们的电子电荷分布对于阐明整个系列的键合趋势和氧化状态具有决定性作用。然而,从实验和理论的角度来看,准确测定和稳健分析锕系化合物的电荷密度都带来了一些挑战。最近,在锕系材料电荷密度的实验重建和拓扑分析方面取得了重大进展 [Gianopoulos et al. IUCrJ,2019,6,895]。在这里,我们讨论了理论方面的互补进展,这些进展使得可以通过块体量子力学模拟准确确定锕系材料的电荷密度。特别是,将实施 Bader 分子和晶体中原子量子理论 (QTAIMAC) 的 T OPOND 软件扩展到 f 和 g 型基函数,从而可以在相同基础上对块体和真空中的镧系元素和锕系元素进行有效研究。研究了四苯基磷酸铀六氟化物共晶体 [PPh 4 + ][UF 6 − ] 的化学键合,其实验电荷密度可供比较。量化并讨论了晶体堆积对电荷密度和化学键的影响。这里介绍的方法可以重现实验电荷密度拉普拉斯算子的拓扑结构的所有细微特征。如此显著的定性和定量一致性代表了对锕系化合物电荷密度分析的实验和计算方法的强烈相互验证。