sika®Viscocrete®-3824 Selie是一种超级塑料的,来自Sika研发实验室的研究工作的高范围降水剂。Sika®Viscocrete®-3824易于使用,旨在赋予新鲜混凝土出色的流变特性。它可大大改善混凝土的放置和整理,并增强所有建筑活动的混凝土泵送。InnovationSika®Viscocrete®-3824 Ease是基于创新的聚合物化学,并获得了Sika的专利。其作用与传统的超塑剂不同,以至于sika®Viscocrete®-3824在粘合剂颗粒上的吸附是由柔性化学键提供的,这不会阻碍混凝土的流动。这一创新显着改善了由Sika®Vis-Cocrete®-3824治疗的混凝土的流动性行为,它们的屈服应力低,粘度低,粘度低,并且较长的可加工性低粘度粘度混凝土混凝土混凝土低粘度混凝土是一种创新的概念,是一种创新的概念,是一种创新的概念,是一种创新的概念contic-dectic-dectic-to visc ot visc ot viscology(Roncretes)(RONCRETES)。它是基于Sika聚合物与Sika专用技术服务的使用。这个概念不仅允许实现具体粘度的显着降低,而且还可以优化连接的性能。
杜拉斯莱克是一种陶瓷涂层,既是疏水又是含水量的。duraslic集成了在应用时形成的三个功能层。在底物界面上,杜拉斯莱克具有化学结合底物的纳米厚层。上面是一个陶瓷层,可增加硬度,耐化学性,腐蚀和刮擦性。顶部表面赋予疏水性,含油含量和耐化学性。杜拉氏液可以定义为“混合”涂层,结合了陶瓷涂层和纳米涂层的益处。duraslic的独特杂种结构以3种方式起作用:•形成一个密集的与底物的牢固化学键的网络•形成惰性,高性能的粘合剂聚合物层•形成高度疏水性和含水性的杜拉质表面杜拉质表面的独特结构和化学成分,可在许多表面应用于许多表面时阻止正常脱位。这意味着更高的效率,降低维护,更长的寿命以及最终的大量成本节省。杜拉斯利(Duraslic)不仅为表面增添了物理保护,而且还有助于清洁的化妆品外观。
Indrajit Chakraborty, 1 Zhanhu Guo, 2 Anirban Bandyopadhyay 3 和 Pathik Sahoo 3, 4, 5* 摘要 在为特定特征设计材料时,除了考虑化学能力之外,考虑物理尺寸变得越来越重要。材料的物理尺寸、光学特性、表面积和机械特性都在决定其光化学能力方面发挥作用。在二维 (2D) 材料中,光电效应的表面积和光化学反应中均匀电荷分布的长距离电导率达到完美平衡。迄今为止,已经研究了各种各样的 2D 材料:低成本、稳定、地球资源丰富且无危害。然而,必须提高光催化剂的效率以满足现代社会日益增长的绿色能源需求。光催化剂特别感兴趣的是将太阳能储存在化学键中以提供长期能量。各个领域的研究人员最近都做出了贡献,包括适当地在空间中排列光催化反应中心、通过修改物理结构和化学功能来调整带隙、使用机器学习协议以及在制备催化剂之前计算密度泛函理论 (DFT)。本综述将介绍修改二维材料的最新贡献,以将开发用于水氧化的光催化剂的集体努力联系起来。此外,在结论部分,我们将强调正在进行的工作的视角、挑战和维度。
在固体物理学和凝聚态物理学中,态密度 (DOS) 量化了所考虑材料中易被占据并具有确定能量的电子态的数量。只要知道色散关系,就可以计算出这个量。可以为各种各样的系统计算 DOS。某些量子系统由于其晶体结构而具有对称性,这简化了 DOS 的计算。总 DOS 是一个允许确定材料电子传导特性的参数。对于晶体中的每个原子,我们确定一个半径为的球体,在该球体内部,我们将电子密度投影到球谐函数(类型:s、p、d 或 f)上。部分 DOS 用于识别晶体中化学键的结构。使用 DFT(密度泛函理论)对单斜 ZrO 2 (m-ZrO 2 ) 的电荷密度和 DOS 进行了第一性原理研究,其中 m-GGA (TPSS) 函数用于交换关联势、伪势 (PP) 近似和 STO (斯莱特类型轨道) 作为集成在 ADF-BAND 代码中的基本函数。氧化锆 (ZrO 2 ) 是一种高 k 电介质 (k 25 和 E g 6 eV)。ZrO 2 是一种很有前途的高 k 电介质候选材料,可取代 SiO 2 作为 CMOS 中的栅极氧化物,因为它兼具出色的机械、热、化学和介电性能。
MSMC101: Biochemistry credits 3 Unit 1: Basic chemistry for biologists Formation of chemical bonds, molecular orbital (MO) theory and linear combination of atomic orbitals (LCAO), basics of mass spectrometry, molecules, Avogadro number, molarity, chemical reactions, reaction stoichiometry, rates of reaction, rate constants, order of reactions, kinetic versus反应,反应平衡(平衡常数)的热力学对照;光与物质相互作用(光谱,荧光,生物发光,磁磁性和磁磁性,光电子光谱法;化学键(离子,共价,范德尔的力量);电负性,极性,极性,极性; VSE PREACER理论和分子质量,分子型,二型理论,pH PHR -IDIC pHR -IDIC pHR -IDID hybr; acrious per; crious per; crious per; crious per ger sermens ofers ybres ybres; acres ofersizations;水,弱酸和碱基的离子产物,结合酸基料,缓冲和缓冲作用等;化学热力学 - 内部能量,热量和温度,焓(键 - 焓和反应焓),gibbs gibbs aTP驱动的反应的自由能力烯烃和炔烃,官能团,氨基酸,蛋白质,多肽骨架中的旋转自由(Ramachandran图)
摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
材料科学领域只见证了极少数具有彻底改变我们世界的潜力的发现和技术进步,而二维 (2D) 材料的出现是其中的佼佼者。2004 年,石墨烯从石墨中分离出来,这种材料的特点是原子级薄度,主要受表面效应的影响,开辟了材料科学的新领域。二维材料的研究,包括石墨烯及其对应物,如硅烯、锗烯、磷烯,以及过渡金属二硫属化物 (TMD)、MXenes 和其他层状半导体,已经发展成为一项全球性的努力,涉及物理、化学、工程和生物等不同领域的数千名研究人员。二维材料的独特之处在于其层状结构,包括强的平面内化学键和层间弱的平面外耦合。这种结构排列允许单个原子层分裂,当材料厚度减小到单层或几层时,电子特性会发生非凡的变化。这种现象被称为量子限制,它赋予二维材料独特且往往出乎意料的特性,推动了对各个领域新应用和创新途径的探索。随着研究人员深入研究这些层状材料的复杂性,越来越明显的是,它们有望开启前所未有的可能性,为科学技术的突破性进步铺平道路。
摘要 . 金属薄膜的物理气相沉积 (PVD) 广泛应用于半导体技术器件的制造 - 近年来其应用范围不断扩大。钨 (W) 是一种低电阻率的难熔金属,通常通过 PVD 方法沉积,用作半导体器件的栅极触点,由于其功函数低且热稳定性高,W 可用于制造微电子器件中的场发射器 [1–3]。为了监测磁控溅射法合成薄膜的质量,有必要开发适合分析这些薄膜的方法。红外光谱法是一种灵敏的化学键分析方法,但 W 薄膜含有弱极性和非极性 WW 键,无法通过红外光谱法直接检测到,因此选择 W 的氧化作为热氧化方法,用于检测厚度为 150 nm 的薄膜的氧化产物,例如 WO 键。氧化后,观察到 W 薄膜在空气中 600 ℃ 时已发生氧化。改性涂层的傅里叶变换红外光谱 (FTIR) 光谱表明,在 700-900 cm -1 区域形成了额外的新信号,这归因于 WO、OWO、W=O 键 - 在 Si-SiO 2 基材上形成了 W-氧键。为了确保涂层均匀性和生产质量,建议使用另外合成的对照样品进行 FTIR 分析。
通讯作者:ocheiemekastephen@nbrri.gov.ng,+23408060094881提交日期:25/02/2024接受日期:26/04/2024日期发布日期:16/05/2024摘要:这项研究调查了生物重新构成的生物置换的开发。环境危害。这些危害包括但不限于污水阻塞和海洋环境中对水生生物的危险造成的洪水。溶液铸造方法用于将不均匀的高岭石粘土纳米粒子与蒸馏水,淀粉,稀乙酸和硝酸混合在一起,以产生不同的热塑性淀粉(TPS)/粘土复合物的不同组成,其粘土材料与2.5 wt至10 wt的粘土。使用X射线衍射(XRD)对复合材料进行表征,并确定了机械和吸水性能。结果表明,与对照相比,与对照相比,抗拉力强度(0.72 MPa),弯曲强度提高了5倍(3.34 MPa),硬度增加了2倍(23.56 HVN),并降低了3倍(6.63%)。此外,10 wt。%粘土含量复合材料显示出最高的机械性能。列出的特性的显着改善归因于结晶度的降低以及热塑性淀粉和纳米粘膜之间新化学键的形成。观察到,如果采用同步机器搅拌器(例如挤出机),则可以进一步增强复合材料的性能。
外延是一个膜沉积过程,其中沉积材料具有与生长基板相同的晶体取向。晶体表面通常以晶体晶格突然终止的悬挂键装饰。这引起了表面上电势的周期性波动,这是ADATOM成核的驱动力。强化学键合发生在底物上悬挂键与外延形成的材料之间的界面上。结果,外延层键与底物紧密,具有高结合能。由于这种紧密的键合,它正在从其宿主底物物理上分离出外延层。但是,出于多种目的,隔离外延层的需求越来越大。与厚度至少为几百微米的刚性晶圆不同,一旦脱离,超薄的外延层就可以使轻质,柔性,可弯曲和弯曲。这些属性对于新兴应用程序至关重要,包括生物电子学,显示和物联网1、2。可以通过堆叠不同属性和功能的超薄薄膜来实现前所未有的性能和多功能性,并从不同的底物中独立生长和去角质3、4。如果在去角质过程中未消耗底物,则可以重复使用。这是有利的,因为底物通常非常昂贵5。已经提出了几种方法,可以将外延层与底物分离,例如化学,机械和激光提升。化学提升使用基板和