This course aims at introducing the basic concepts and techniques in carrying out chemical analysis by using various modern spectroscopic and chromatographic instruments.Students will learn how to use modern instruments to determine the amounts of substances present in a mixture down to part per million levels (ppm), and identify the structure of a compound.Techniques such as UV-visible spectroscopy, infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, gas chromatography and high performance liquid chromatography will be covered.This course will also discuss some common standard practices of collecting and preparing samples for laboratory testing, the accreditation system in testing laboratories.This course is conducted in the format of lecture.本课程旨在介绍化学分析中所用到的现代光谱和色谱仪器的基本概念和技术。学生将学习使用该 等仪器来分析浓度水平低至百万分之一的物质,并确定化合物的结构。课程内容包括紫外 − 可见光 谱法、红外线光谱法、质谱分析法、核磁共振、气相色谱法及高效能液相色谱法的操作技巧,以 及化验工作中的收集及制备样本的常用标准技巧和香港化验室所实行的认可系统。课程以讲课形 式进行。 Medium of Instruction:
在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。
https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)
脑机接口作为大脑和外部设备信息交互的渠 道 , 是前沿脑科学和重要脑疾病诊治的底层核心 工具 . 脑机接口是生物技术和信息技术交叉融合 的颠覆性技术 , 其技术研发和落地应用是一个复 杂的系统工程 , 包括神经电极、芯片、算法、通讯、 植入等核心器件和关键技术 , 涵盖微电子、神经 科学、材料学、计算机科学、临床医学、伦理学 等多学科交叉 . 因此 , SCIENCE CHINA Informa-
[9] 刘洋 , 刘东远 , 张耀 , 等 .面向脑机接口应用的便携式 fNIRS 拓 扑成像系统:全并行检测与初步范式实验 [J].中国激光 , 2021, 48 (11): 1107001.Liu Y, Liu D Y, Zhang Y, et al.A portable fNIRS - topography system for BCI applications: full parallel detection and pilot paradigm validation[J].Chinese Journal of Lasers, 2021, 48(11): 1107001.
回归因子预处理的信号中分别提取了常用的 fNIRS 特征 , 并比较了它们的质量 。 结果表明 , 基于 GLM 的方法能够对大脑活动提供更好的单次实验评估 ,
① 参见王行愚 、 金晶 、 张宇等 :《 脑控 : 基于脑 — 机接口的人机融合控制 》, 载 《 自动化学报 》2013 年第 3 期 , 第 208-221 页 。