Brian Sherman,CB&I商业副总裁涉及川崎重工业有限公司。川崎重工业有限公司有限公司是一般工程制造商,拥有超过125年的经验,经验超过125年。 川崎建立了川崎集团的新型愿景声明,“集团愿景2030:对未来的可信赖解决方案”,并着重于三个领域,“一个安全可靠的遥不可及的社会”,“近乎未来的流动性”,以及为社会问题提供解决方案的“能源和环境解决方案”。 尤其是“能源和环境解决方案”,通过确保在世界其他地区之前确保整个供应链(用于生产,运输,存储和利用)所需的技术,川崎旨在实现一个利用氢气的社会,该社会是使用氢,该社会在使用时没有发出碳二氧化碳的最终清洁能源。 要了解更多信息,请访问https://global.kawasaki.com/enBrian Sherman,CB&I商业副总裁涉及川崎重工业有限公司。川崎重工业有限公司有限公司是一般工程制造商,拥有超过125年的经验,经验超过125年。川崎建立了川崎集团的新型愿景声明,“集团愿景2030:对未来的可信赖解决方案”,并着重于三个领域,“一个安全可靠的遥不可及的社会”,“近乎未来的流动性”,以及为社会问题提供解决方案的“能源和环境解决方案”。尤其是“能源和环境解决方案”,通过确保在世界其他地区之前确保整个供应链(用于生产,运输,存储和利用)所需的技术,川崎旨在实现一个利用氢气的社会,该社会是使用氢,该社会在使用时没有发出碳二氧化碳的最终清洁能源。要了解更多信息,请访问https://global.kawasaki.com/en
我们提出了一种方法,通过解决基于模型的最优控制问题,以经济高效的方式运行电解器以满足加氢站的需求。为了阐明潜在问题,我们首先对额定功率为 100 kW 的西门子 SILYZER 100 聚合物电解质膜电解器进行实验表征。我们进行实验以确定电解器的转换效率和热动力学以及电解器中使用的过载限制算法。得到的详细非线性模型用于设计实时最优控制器,然后在实际系统上实施。每分钟,控制器都会解决一个确定性的滚动时域问题,该问题旨在最大限度地降低满足给定氢气需求的成本,同时使用储罐来利用随时间变化的电价和光伏流入。我们在模拟中说明了我们的方法与文献中的其他方法相比显著降低了成本,然后通过在实际系统上实时运行演示来验证我们的方法。
科学家使用了锌空气电池,其中还原氧气产生了H 2 O 2。“锌是一种丰富且历史悠久的元素……在印度非常便宜和丰富,”跨学科能源研究中心(ICER),固态和结构化学单元(SSCU)的教授Aninda J Bhattacharyya说。
心血管疾病(CVD)是全球发病率和死亡率的主要原因之一,继续寻找新型治疗剂对于应对这一全球健康挑战至关重要。在过去十年中,硫化氢(H₂S)在医学研究领域引起了极大的关注,因为它已被证明是心脏保护气体信号分子。它以内源产生的燃气递质加入一氧化氮和一氧化碳。至于其机制,H₂S通过在称为硫化的过程中对靶蛋白上的半胱氨酸残基的翻译后添加到半胱氨酸残基来发挥作用。因此,观察到的H₂S的生理作用包括血管舒张,抗凋亡,抗炎,抗氧化作用以及离子通道的调节。各种研究都观察到H₂S在心肌梗塞,缺血 - 重新灌注损伤,心脏重塑,心力衰竭,心律失常和动脉粥样硬化等疾病中的心脏保护益处。在这篇综述中,我们讨论了各种CVD中H₂的机制和治疗潜力。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年2月19日发布。 https://doi.org/10.1101/2025.02.14.638267 doi:Biorxiv Preprint
摘要:希望通过更少的步骤高效地合成有机化合物,但获得更高的产量,因为这样可以减少能源和试剂的使用、废物的产生,从而降低环境影响和成本。具有金属中心的(多)氟芳烃中氟取代基邻位的 C - H 键的反应性相对于间位和对位增强。因此,不经预功能化的(多)氟芳烃直接 C - H 功能化正成为有机化学中的一个重要研究领域。利用与 C - F 键邻位的 C - H 键的反应性对(多)氟化芳烃进行功能化的新型选择性方法正在不断被开发。本综述总结了反应性增强的原因以及随之而来的含(多)氟芳烃有机化合物合成的发展。
光催化水分裂已成为氢生产的可持续途径,利用阳光来驱动化学反应。本综述探讨了DENSITY功能理论(DFT)与机器学习(ML)的整合,以加速光催化剂的发现,优化和设计。DFT提供了对电子结构和反应机制的量子力学见解,而ML算法可以对材料特性,催化性能的预测和逆设计进行高通量分析。本文大约在二元光催化系统中取得进步,突出了Tio 2,Bivo 4和G-C 3 N 4等材料,以及新型的异质关节和共同催化剂,以改善光吸收和电荷分离E FFI的效率。关键突破包括在实验和计算数据集中训练的ML架构,例如随机森林,支持矢量回归和神经网络,以优化带隙,表面反应和氢的演化速率。诸如量子机学习(QML)和生成模型(GAN,VAE)等新兴技术展示了探索假设材料并提高计算效率的潜力。该评论还突出了高级光源,例如可调LED和太阳模拟器,以实验光催化系统的实验验证。挑战与数据标准化,可伸缩性和可解释性有关,提出了协作框架工作和开放访问存储库,以使DFT-AI工具民主化。通过桥接实验和计算方法,这种协同方法的变化潜力可实现可扩展的,成本的氢生产,为可持续能源解决方案铺平了道路。
有机无机杂交光催化剂用于水分割的利用引起了显着的关注,因为它们能够结合两种材料的优势并产生协同效应。但是,由于对这两个组成部分之间的相互作用以及其准备过程的复杂性的相互作用有限,它们仍然远非实际应用。在此,通过将糖化的共轭聚合物与TIO 2-x介孔球相结合,以制备高效率杂种杂种光催化剂。与亲水性寡醇(乙二醇)侧链的共轭聚合物的功能不仅可以促进结合聚合物在水中的分散体,而且还可以促进与TIO 2 -X形成稳定的异质结纳米颗粒的相互作用。在35.7 mmol H-1 g-1的365 nm时,在PT共同催化剂存在下,氢的量子产率为53.3%,氢的演化速率为35.7 mmol H-1 g-1。基于飞秒瞬态吸收光谱和原位分析的高级光物理研究,XPS分析揭示了II型异质结接口处的电荷转移机制。这项工作表明了糖化聚合物在构建用于光催化氢生产的杂交异质结中的前景,并深入了解了这种异质结光催化剂的高光催化性能。
热电纺织设备代表了为可穿戴电子设备供电的有趣的途径。到目前为止,缺乏空气稳定的N型聚合物阻止了纺织制造所需的N型多弹性纱的发展。在这里,探索了最近报道的N型聚合物聚(苯甲酸氢酮)(PBFDO)的热机械性能,并评估了其作为纱线涂层材料的适用性。聚合物的出色鲁棒性促进了丝纱的涂层,因此,在环境条件下,预计半衰期为3.2±0.7年,其有效的体积电导率为13 s cm-1。此外,n型PBFDO涂层丝纱,具有E = 0.6 GPa的幼体模量,并且可以机洗14%的折断时的菌株,而在七个洗涤周期后,电导率仅降低了三倍。PBFDO和Poly(3,4-乙二醇二苯乙烯):Poly(styenesulfonate)(PEDOT:PSS)涂层的丝绸纱线用于制造两个平面外热纺织设备:一个热电纽扣和16张腿的较大的热电器。出色的空气稳定性与17 mV的开路电压配对,最大输出功率为0.67μW,温度差为70 k。显然,PBFDO涂层的多膜片丝纱是实现空气稳定热电动纺织品的有希望的组件。