摘要:由于其二维性质及其在其较大的带隙内的托管缺陷的能力,六角硼硝酸盐正在迅速成为光子量子技术的平台,作为光子量子技术的平台,可以充当室温单个单光子发射器。在本审查论文中,我们概述了(1)硝化氢硼的结构,性质,生长和转移; (2)通过与从头算的计算相比,在光子量子技术中的应用计算中,颜色中心的颜色中心和缺陷分配; (3)用于颜色中心的电气调整和电荷控制的异质结构设备,构成了Photonic量子技术设备的基础。这篇评论的目的是为读者提供基于六角硼的光子量子量子技术的缺陷工程和装置制造进度的摘要。
基础设施将由两个绿色氢生产地点和一个由8个氢加油站(HRS)组成的网络,该网络将提供高达40辆燃料电池卡车(FCT)的机队以及相关的冷藏单元和拖车,以及最多15个逆转氢氢化氢的工具。物流链将使用创新的容器HDS,以提供和保证为客户提供H2分销服务的连续性。人力资源将位于重大流量的重型交通范围内,并在Occitanie地区提供战略道路的初始覆盖范围,从而允许当地/地区车辆的运营,并为西班牙和北欧之间的国际交通服务。这些HR将位于北海地中海走廊上的十-T核网络上,或者在将该走廊与波尔多的大西洋走廊联系起来的十吨综合网络连接上。
文献中发现的估计成本,因为CC的车载装置的差异很大,范围从估计不到每吨不到100欧元的CO 2到每吨Co 2近近300欧元,捕获,液化并存储在车载上。这项研究发现,在适当的情况下,在技术和经济上似乎有可能安装CC船上的船上,只要运输的脱碳政策措施继续发展和板载CC的技术开发。需要将引入CC船上船舶的成本与替代措施进行比较,例如改用E-Methanol,可再生氢等。例如,Brynolf等人(2022)估计液化氢的碳减速成本,每吨220-欧元850欧元的运输量和不同电透明的减排成本为150欧元至1250欧元,每吨CO 2,均为每吨的CO 2,含有合并的生物甲醇和较低范围内的含量为每吨。
富集岩基本上是一种铝制岩石,含有水合的氧化氧化铝作为主要成分和氧化铁,二氧化硅和泰坦氏菌作为较小的成分,其比例不同。存在于铝土矿矿石中的水合铝氧化物是二氧化氢和Boehmite,Al 2 O 3 .H 2 O(Al 2 O 3:85%; Al:45%); Gibbsite或himargillite,Al 2 O 3 .3H 2 O(Al 2 O 3:65.4%; Al:34.6%)和铝土矿(含有胶体氧化铝水凝胶),Al 2 O 3 .2H 2 O(Al 2 O 3:73.9%; Al:Al:Al:39.1%)。铝土矿中的氧化铁作为赤铁矿或谷石。二氧化硅作为粘土;并作为白细胞或金红石免费的石英和钛。铝土矿是铝的主要矿石,它是现代工业中最重要的非有产金属之一。它也是难治性和化学工业的必不可少的矿石。
•最佳创新:由欧洲委员会DG RTD的副总监Joanna Drake授予•最佳成功故事:由DanicaMaljković递给DanicaMaljković,主席,清洁氢合伙伙伴关系,理事委员会•最佳外展:由Mirela Atanasiu递给Mirela Atanasiu,由单位运营和清洁厂的伙伴关系,Hyfory&Hydery Handers•H2 Valys•H2 Valy•H2 valy•H2 valy•H2 valy•H2 Valy in 2: DG RTD总监,欧洲委员会•H2创新女性:由Valerie Bouillon-Delporte交付,Clean Hydrogen Partnership和Alessia D'Addabbo执行董事,绿色氢的女性,欧洲氢化氢的妇女,欧洲氢研究奖•年轻科学家奖:由Luigi Crema,Luigi Crema,Luigi Crema,Hydergogen,Research,Research,Research,Research,Research europe,/Div
对进化氢如何影响LI电池的循环知之甚少。假设包括Lih的固体电解质中(SEI)和树突生长中的LIH的形成。在这里,我们发现LI电池中的Lih形成可能遵循不同的途径:循环过程中的氢会反应于Nucleate并在已经沉积的Li Metal中生长Lih,从而消耗活跃的Li。我们提供了以下证据,表明在李比特里(Li Bateries)中形成的lih从当前收集器中电动LI降低电池容量。我们在石墨和硅阳极上也检测到Li Metal和Lih的共同存在,表明LIH在大多数Li电池阳极化学中形成。最后,我们发现LIH具有自己的SEI层,在化学和结构上与Li Metal上的SEI不同。我们的结果突出了LIH的形成机制和化学起源,为如何防止其形成提供了重要的见解。
预计到 2050 年,全球能源消耗将增长近 50%。氢气作为一种清洁、多功能的能源载体,可以满足这一需求,同时还能实现能源和工业领域的深度脱碳。到 2050 年,氢气需求预计将增长六倍。澳大利亚靠近亚洲市场,这为其在新兴氢气出口行业中的领先地位提供了重要机会。液态氢 (LH₂) 具有高能量密度,预计将在供应链中发挥关键作用,通过液化将氢气的体积减少近 900 倍,从而实现高效的储存和运输。液化天然气 (LNG) 行业因类似的低温工艺而成为液氢 (LH₂) 生产的标杆。作为领先的液化天然气生产国,澳大利亚具有竞争优势,可以利用现有的知识、基础设施和供应链发展类似的液化氢行业。然而,目前的氢气液化器缺乏实现快速增长和发展所需的效率和成本效益。
生产清洁能源和减少能源浪费对于实现联合国可持续发展目标(如可持续发展目标 7 和 13)至关重要。这项研究分析了多兆瓦级绿色氢气生产中废热回收的技术经济潜力。一个 10 MW 质子交换膜电解过程被建模为一个热回收系统和一个有机朗肯循环 (ORC) 来驱动氢气的机械压缩。技术结果表明,当实施与 ORC 相结合的废热回收时,电解器的第一定律效率从 71.4% 提高到 98%。ORC 可以产生足够的功率来驱动氢气的压缩,从电解器出口压力 30 bar 到 200 bar。进行了经济分析以计算系统的平准化氢气成本 (LCOH) 并评估实施与 ORC 相结合的废热回收的可行性。结果表明,电价决定了 LCOH。当电价较低时(例如专用海上风电),实施热回收的 LCOH 较高。额外的资本
铝基质复合材料(AMC)对其出色的机械性能引起了极大的关注,尤其是在苛刻的航空航天和汽车行业中。本研究的重点是用碳化钾(B4C)和切碎的E玻璃纤维增强的铝7075的机械表征。主要目的是增强材料的强度和韧性,同时减轻其固有的脆性。增强过程涉及使用搅拌铸造方法将陶瓷颗粒和切碎的玻璃纤维整合到铝7075基质中。此方法确保了均匀的增强剂分散,从而导致复合结构。实验设置包括改变B4C和E玻璃纤维的重量百分比,以评估其对复合材料机械性能的影响。在ASTM标准标准下,评估了复合材料的密度,孔隙率,硬度和拉伸强度。结果表明,添加碳化氢硼和e-玻璃纤维可显着改善复合材料的硬度和拉伸强度,同时降低孔隙率。对磨损表面的扫描电子显微镜(SEM)分析提供了对磨损机制的见解以及增强作用在增强摩擦学性能方面的有效性。