最近的太空发展正在实施几种更简单、更便宜的火箭技术。出于环保考虑和政府限制,有必要用绿色推进剂取代目前的(肼基)有毒推进剂,同时将性能损失降至最低。过氧化氢是未来绿色推进剂的有希望的候选者,因为它具有灵活性和良性,可以推动简单、经济高效、环保的推进,其性能足以取代肼或其他高性能有毒推进剂。因此,本论文致力于研究过氧化氢基推进剂,以用于未来的太空推进应用。这项工作的主要目的是研究绿色推进剂的燃烧特性。首先,我们讨论了过氧化氢在太空推进中的使用、特性和管理,后来,使用 NASA CEA 代码研究了过氧化氢的各种组合和成分。所进行的活动涉及过氧化氢作为单一推进剂、双推进剂和混合推进剂的研究。主要目的是找出不同 O/F 比 2、4、6、8、10 和各种压力室值 20、25 和 30 bar 下的燃烧温度和比冲值。为此,考虑了两种情况来研究乙醇、RP-1 和液态甲烷的双推进剂,并获得了不同 O/F 比下以及在室、喉部和出口处的质量分数变化。在混合推进剂条件下研究了四种情况,以各种石蜡(SASOL 0907、SASOL 6003、SASOL 6805)作为燃料,并有效研究了添加铝的影响。在双推进剂的情况下,考虑了所有成分并比较了燃烧产物,以便在适当的 O/F 比和固定的室压下实现最佳效率。观察到过氧化氢浓度对燃烧性能有显著影响,化学成分因重量浓度而产生影响。结论是过氧化氢对研究活动的未来发展很有用。
氢对其对低温GHG经济的潜在贡献引起了重大兴趣,因为其无碳储存化学能的能力。在本报告中,我们考虑了两种脱碳化氢生产的方法,即蓝色和绿色氢,用于发电,工业加热以及美国的工业原料。我们发现,使用蓝色氢来减少炼油和氨制造中的原料排放量有近期的机会。对于绿色氢具有竞争力,需要大量降低生产和存储成本。但是,如果这些成本足够下降,则绿色氢具有广泛的潜力:用于长期储能,工业热以及作为炼油,化学物质和钢的原料。然后,我们评估政策选择,以支持权力和工业部门中的脱碳化氢。税收抵免具有熟悉的优势(例如,CCUS的45Q税收抵免和风的PTC税收抵免),而不是在部门内提高价格。尽管对脱碳氢的有效税收抵免比45Q更为复杂,但我们发现它可以正确解释脱碳化氢的气候益处。
全球各地建设的大型液化氢终端,大多与火箭发射设施有关。虽然有NASA肯尼迪航天中心的3,218m3储罐、川崎重工交付的种子岛宇宙中心的540m3储罐等球形储罐,但这些都不是船舶的装卸终端。近年来,大型储罐的研究正在进行中。例如,肯尼迪航天中心自2018年起开始建造容量约4,700m3的液化氢储罐。东洋关越株式会社也在致力于开发10,000m3的液化氢储罐。还需要连接船舶、将液化氢送至终端的装卸臂系统(LAS)。有一种适用于液化天然气 (LNG) 的产品,但它的工作温度约为 -160°C,没有产品可以处理 -253°C,这是液化氢的温度。目前没有液化氢终端,也没有从船上卸下液化氢的方法,因此必须开发许多不同的设备。国际
COVID-19 疫情导致医护人员个人防护装备 (PPE) 普遍短缺,包括 N95 口罩(过滤式面罩呼吸器;FFR)。这些口罩仅供一次性使用,但其灭菌并随后重复使用有可能大大缓解短缺问题。在这里,我们研究了使用 SteraMist 设备(TOMI;马里兰州弗雷德里克)在密封环境室中产生的离子化过氧化氢 (iHP) 对 PPE 进行灭菌。使用生物指示剂组件中的细菌孢子评估 iHP 灭菌的效果。经过一次或多次 iHP 处理后,对来自三家制造商的五种型号的 N95 口罩的功能保留情况进行了评估,评估依据是它们形成气密密封(使用定量适合性测试测量)和过滤气溶胶颗粒的能力。过滤测试在大学实验室和国家职业安全与健康研究所 (NIOSH) 预认证实验室进行。数据表明,使用 SteraMist iHP 技术灭菌的 N95 口罩可保持过滤效率达 10 次,这是迄今为止测试的最大次数。典型的 iHP 环境室体积约为 80 立方米,可处理约 7000 个口罩和其他物品(例如其他 PPE、iPAD),这对于繁忙的医疗中心来说是一种有效的方法。
众所周知,连贯的光是可实现的最稳定的经典光,它表现出泊松统计分布。shot噪声代表了这种固有的随机性的极限,并与使用pois-sonian光源发射的光子的时间分离相关。因此,一个更正常或次佛森的光子流揭示了基础辐射过程的量子性质。1在任何给定时间发出不超过一个光子的完美常规光源,称为单光子源(SPS),代表了各种量子技术的必不可少的构建块,包括量子计算方案,玻色子计算方案,玻色子采样,精确的Metrology,Precision Metrology,以及安全的通信应用以及量子密钥分布,例如量子密钥分布。2–6
摘要:分子腔内成键的氢原子经常经历隧穿或热传递过程,这些过程在各种物理现象中发挥着重要作用。此类传递可能需要也可能不需要中间态。此类瞬时状态的存在通常通过间接方式确定,而尚未实现对它们的直接可视化,主要是因为它们在平衡条件下的浓度可以忽略不计。在这里,我们使用密度泛函理论计算和扫描隧道显微镜 (STM) 图像模拟来预测,在专门设计的电压增强高传输速率非平衡条件下,吸附在 Ag(111) 表面的无金属萘菁分子中两氢转移过程的顺式中间体将在双 C 形态的复合图像中可见。在理论预测的指导下,在调整扫描温度和偏压下,STM 实验实现了顺式中间体的直接可视化。这项工作展示了一种直接可视化难以捉摸的中间体的实用方法,增强了对氢原子量子动力学的理解。
前言 本毒理学概况是根据美国有毒物质与疾病登记署 (ATSDR) 和环境保护署 (EPA) 制定的指导方针* 编写的。原始指导方针于 1987 年 4 月 17 日刊登在《联邦公报》上。每份概况将根据需要进行修订和重新发布。ATSDR 毒理学概况简明扼要地描述了其中描述的这些有毒物质的毒理学和不良健康影响信息。每份同行评审的概况都会确定和审查描述物质毒理学特性的关键文献。其中还介绍了其他相关文献,但描述不如关键研究详细。本概况并非详尽无遗,但参考了更全面的专业信息来源。概况的重点是健康和毒理学信息,因此每份毒理学概况都以一份公共卫生声明开头,该声明以非技术语言描述物质的相关毒理学特性。公共卫生声明之后是有关人类显著接触水平以及(如果已知)显著健康影响的信息。确定物质健康影响的信息是否充分在健康影响摘要中描述。ATSDR 确定了对保护公众健康具有重要意义的数据需求。每个概况包括以下内容:(A)检查,
h 2 O 2在水溶液中的浓度已通过532 nm拉曼态度来确定。h 2 O 2是一种高需求的绿色氧化剂,其H 2和O 2的直接合成是传统生产过程的有前途的替代方法。拉曼光谱是针对H 2 O 2量化的快速,无损和可靠的分析技术,它避免了传统的碘测定的缺点(样品提取,制备了试剂的制备和长时间的分析)。已经设计了一个高压视图单元,以促进高压下的测量,通常在直接合成过程中发现。已经开发了一个彻底的校准模型,并在高压(5.0 MPa)和温度(最高45℃)的情况下进行了阀门。溶剂(水)用作纠正乘法扭曲的内标。分析技术的验证与经典碘化滴定相比产生了可重现和准确的结果,从而使单个校准模型用于一系列反应条件。通过在不同条件下分析H 2 O 2的分解反应,已建立了拉曼光谱对实时定量反应监测的可行使用。©2010 Elsevier B.V.保留所有权利。
4.1 识别现有或潜在腐蚀问题的方法 4-1 4.2 识别潜在问题区域 ........: ..............4-1 4.3 初步检查 ................................4-4 4.4 腐蚀测量 ' 4-14 4.5 比较测量值和预测值腐蚀 .................4-19 4.6 参考文献 4-25