糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
扩展数据图 1. 使用 RFdiffusion 设计 β 链配对支架。为了充分利用 RFdiffusion 的多样化生成潜力,同时鼓励在设计输出中使用 β 链界面,我们实现了一种界面调节算法,该算法可根据简单的用户输入生成 SS/ADJ 调节张量。该模型以张量的形式理解折叠调节,这些张量标记每个残基(a,顶部和左侧)的二级结构(蓝色)以及这些二级结构块的邻接关系(a,黄色中心)。用户指定的参数指定了以下信息:结合剂界面二级结构块(在本例中为 β 链)、该块的长度(b,结合剂张量 L 中的青色块)以及结合剂块相邻的靶位残基(b,靶位张量 T 中的青色块)。根据这些预定义参数,该算法随机采样结合剂界面二级结构块在残基索引空间中的位置,同时保持与指定靶位残基的确定邻接关系(绿色)。该用户定义的调节张量将扩散输出导向β链配对的结合物-靶标界面 (c)。此前,RFdiffusion 界面设计计算可以针对指定为靶标“热点”的特定残基,以指定要结合的靶标残基。而这种新的链间 SS/ADJ 调节功能,使用户能够在结合物支架生成过程中指定“β链热点”或“ɑ-螺旋热点”。基于扩展的结合物-靶标 SS/ADJ 张量调节的结合物支架输出,支持用户指定 β 链界面类型的设计。
摘要 表皮生长因子 (EGF) 可诱导非肿瘤大鼠肾成纤维细胞在细胞培养中发生转化表型,这些转化表型是从成年小鼠的许多非肿瘤组织(包括颌下腺、肾脏、肝脏、肌肉、心脏和大脑)中分离出来的。它们与之前描述的从肿瘤细胞中分离出来的转化生长因子 (TGF) 类似,具体如下:它们可通过酸/乙醇提取,并且是酸稳定的低分子量 (6000-10,000) 多肽,需要二硫键才能起作用,并且它们会导致非肿瘤指示细胞的锚定非依赖性生长,而这些细胞在没有它们的情况下不会在软琼脂中生长。从雄性小鼠的颌下腺中对这些 TGF 进行部分纯化,结果表明它们不同于 EGF。与之前描述的细胞外 TGF 不同,但与来自肿瘤细胞的某些细胞 TGF 一样,它们通过 EGF 增强其促进锚定非依赖性生长的能力。颌下腺 TGF 蛋白的等电点接近中性。在 Bio-Gel P-30 上进行色谱分析,然后进行高压液相色谱分析,总纯化率达到 22,000 倍。在 EGF 存在下进行测定时,最纯化的蛋白质在 1 ng/ml 的软琼脂中具有诱导生长的活性。这些数据进一步证明了肿瘤形成可能是由非肿瘤生化过程的定量而非定性改变引起的。我们最近描述了 (1) 从几种肿瘤小鼠组织(包括由莫洛尼肉瘤病毒 (MSV) 转化的成纤维细胞和最初由化学致癌物诱导的可移植膀胱癌)中分离和表征一组低分子量、酸稳定性多肽(称为转化生长因子 (TGF))。这些多肽是可通过酸/乙醇提取的细胞内蛋白质。类似的细胞外转化多肽,称为肉瘤生长因子 (SGF),是由 De Larco 和 Todaro (2) 从培养的 MSV 转化小鼠成纤维细胞的条件培养基中首次分离出来的。最近报道了几种其他细胞外转化多肽,它们来源于人类 (3) 和动物 (4) 来源的肿瘤细胞。所有这些多肽在应用于培养的未转化、非肿瘤指示细胞时都会引起以下一系列变化,这些变化为 TGF 提供了一个操作性定义:(i) 单层细胞密度依赖性生长抑制的丧失;(ii) 单层细胞过度生长;(iii) 细胞形状改变,导致指示细胞呈现肿瘤表型;(iv) 获得锚定独立性,从而能够在软琼脂中生长。未转化的非肿瘤细胞不会在软琼脂中形成逐渐生长的菌落,并且培养细胞的这种不依赖锚定的生长特性与体内肿瘤的生长具有特别高的相关性(5-7)。
本独立的教科书涵盖了进化生物学中序列分析的基本方面,包括序列比对,系统发育重建和融合模拟。它通过一系列超过400个计算机问题来解决这些方面,从基础到研究级别,再到完成学习。学生在科学数十年的相同计算环境中解决了问题 - UNIX命令行。这在PC的所有三个主要操作系统上都可用:Microsoft Windows,Mac-OSX和Linux。要使用此功能强大的系统学习,学生通过应用通用工具,生物信息学软件以及专门为本课程编写的40多个程序来分析样本序列数据。包括所有问题的解决方案,这本书是自学的理想之选。问题分为以引言和新概念和程序列表为首的部分。通过使用实用计算来探索进化概念和序列数据,该书使读者能够解决自己的计算问题。
转化生长因子β(TGF-β)在肾小管和肾小球上皮细胞中引发上皮间质转变(EMT),从而通过与TGF-β的相互作用在TGF-β中相互作用,导致细胞外基质的过量产生和沉积在TGF-β型号中的作用。 II型(TβRII)。EMT有助于间质肾纤维化的发病机理,肾纤维化是终末期肾脏疾病的标志。这项研究旨在鉴定Angulata活跃分数中的生物活性化合物,并评估其抑制TGF-β活性及其作为候选药物的潜力的能力。使用气相色谱 - 质谱法(GC-MS)分析了Angulata活性分数中的活性成分。从PubChem数据库中获得生物活性化合物结构,而蛋白质靶标TβRI和TβRII从蛋白质数据库(PDB)中获取。使用PYRX 0.8和Discovery Studio进行了分子对接分析。Swissadme用于评估配体性质和药物液化。鉴定出三种主动活性化合物,即棕榈酸,campsterol和Stigmasterol。在计算机研究中表明,在TβRI和棕榈酸,camp醇,柱头固醇和SB431542之间存在强键,分别为-5.7,-10,-9.4和-10.9 kcal/mol,结合能值分别为-5.7,-10,-9.4。同样,它们与TβRII强烈结合,结合能值分别为-5.2,-7.1,-7.5和-6.1 kcal/mol。所有化合物都符合Lipinski的药物标准。在已识别的活性化合物中,campesterol对TβRI的亲和力最高,而柱头固醇对TβRII的亲和力很强。这些发现表明,这三种化合物具有候选药物的潜力。关键字:糖尿病性肾病,转化生长因子β,TGF-β抑制剂,Physalis angulata
异常检测(AD)代表了一种从根本上进行数据驱动发现的新工具。最初的努力集中在将强大的离线算法调整到这些高通量流系统中,但这种算法应如何适应不断发展的检测器条件的问题仍然是一个重大挑战。在这项工作中,我们引入了一个模块化生态系统,以制定和评估自主发现的策略,其中包含了不同的组件,包括:具有时间依赖性效果的数据集,复杂的触发菜单,实时控制机制和成本感知的优化标准。我们通过使用公共CMS数据集的AD触发器进行了基于强化学习的新基准来说明这一框架,旨在鼓励以社区为导向的发展发展新一代智能和适应性触发器。
背景:脑电图(EEG)越来越多地用于监测全身麻醉的深度,但是大麻醉监测的EEG数据很少被重复用于研究。在这里,我们探索了从一般麻醉中重新利用脑电图监测,用于使用机器学习进行大脑年龄建模。我们假设在全身麻醉期间从脑电图估算的大脑年龄与围手术期风险有关。方法:我们在稳定的丙泊酚或稳定的丙烷麻醉下重新分析了323例患者的四局EEG,以研究四个EEG特征(EEG功率的95%(95%EEG功率<8 E 13 Hz)的年龄预测:总功率,Alpha频段,Alpha频段,Alpha band Power(8 E 13 Hz),Power Spectrum和Spatial spatial和Spatsial spatsial sy fromeny confurears和Spats spats spatsial sy频率。我们在丙泊酚麻醉期间由健康参考组(ASA 1或2)的EEG构建了年龄预测模型。尽管所有签名都是信息丰富的,但最先进的年龄预测性能通过沿整个功率谱的电极进行解析(平均绝对误差¼8.2岁; R2¼0.65)来解锁。结果:ASA 1或2例患者的临床探索表明,脑年龄与术中爆发抑制正相关,这是全身麻醉并发症的危险因素。令人惊讶的是,大脑年龄与较高的ASA分数患者的爆发抑制作用,表明隐藏的混杂因素。次级分析表明,与年龄相关的脑电图特征是丙泊酚麻醉的特异性,这是通过有限的模型概括对用sevo lureane维持的麻醉的。结论:尽管全身麻醉的脑电图可能实现最新的年龄预测,但麻醉药物之间的差异会影响脑时代模型的有效性和有效性。为了释放脑电图监测临床研究的休眠潜力,至关重要的是,具有精确记录药物剂量的异质种群的较大数据集至关重要。
利益冲突作者宣布没有利益冲突。作者贡献SB和GD为论文开发了思想和概念。SB进行了实验,数据分析并领导论文的撰写。两位作者都为草稿做出了巨大贡献,并获得了发表的最终批准。致谢我们感谢同事,尤其是Natasha Tigreros博士的评论和讨论,改善了该项目的方向。我们感谢亚利桑那大学的毕业生和专业学生会项目资助。数据可访问性数据和软件代码可在Dryad上找到:doi:10.5061/dryad.b8gtht7j6
男性不育症是大约40%的经历原发性或继发性不育症的夫妇的重要因素,构成了主要的生物医学和社会挑战。基于世界卫生组织(WHO)标准的传统精子评估提供了精液集中,运动和形态的基本评估。然而,这些方法面临着相当大的局限性,包括在观察者间和观察者内和分子洞察力有限,功能和分子见解的缺乏以及涵盖临床,基因组和表观遗传数据的整合标准。在最近几十年中,人工智能(AI)的模型已成为一个potivotal ands的模型。在生殖医学中,AI通过提高诊断和预后的准确性,同时为个性化的生殖医疗保健铺平道路,从而发挥了变革性的作用。机器学习和深度学习应用是自动化的过程,这些过程几乎完全依赖于人类专业知识,从而在评估精子形态,运动性和功能方面具有前所未有的精度。本文在精子分析中对AI应用程序进行了全面和多学科的评论,涵盖了常规方法及其对高级分类和预测模型的局限性。它还探讨了AI与“ OMICS”技术(基因组学,转录组学,蛋白质组学和表观基因组学),微流体设备的发展以及在临床实践中采用大数据技术的整合。评论以道德考虑的讨论结束,需求