• 根据欧洲工业绝缘基金会 (EiiF) 2021 年的研究,管道、容器、储罐和锅炉的技术绝缘可立即实现每年 160 TWh(14 Mtoe)的节能潜力,并减少欧盟 27 国工业 40 Mt 的二氧化碳当量排放,相当于 1000 多万欧盟家庭的年能源消耗。技术绝缘的减排潜力超过 5%(70 TWh),可避免 14 Mt 的排放,相当于每年为约 2800 万户家庭供暖所需的天然气量(12 MWh/户)。 • Agora Energiewende 研究还强调,将更多建筑物连接到现有的区域供热是一项重要的短期措施。这表明,到 2027 年,区域供热可能具有节省约 125 TWh(约 125 亿立方米)天然气的技术潜力。 • 区域供热 (DH) 是一种行之有效的解决方案,可以逐步淘汰化石燃料供热(天然气、石油和煤炭),并以经济高效的方式整合可再生能源。可再生能源和废热源占 DH 部门使用的能源供应的近三分之一,并且还可以进一步增长。高达 25% 的区域供热可以由工业废热提供,欧盟供暖和热水总能源需求的 10% 以上可以通过数据中心、地铁站、第三产业建筑和废水处理厂的热量来满足。
电池按用于电极的材料类型进行分类。例如,汽车电池被称为铅电池,因为它们使用铅用于正电极和负电极。大多数家用电池(通常用于遥控器,摄像机和玩具)中的家用电池,使用碱,镍金属氢化物和镍镉。锂离子(锂离子)电池使用锂化合物作为负电极处正极和石墨的材料。锂离子电池可充电,设计可持续很长时间:锂离子电池可以执行500至10,000个循环的充电和放电。取决于充电的频率,电池在几个月之间(例如,由专业人士的工艺工人使用的电动工具)和20多年的时间(例如,存储应用程序)达到了生命的尽头。
23 对于全球化石燃料储量,图中显示了如果所有已探明的煤炭、石油和天然气储量在没有 CCUS 的情况下燃烧,将排放的二氧化碳。褐煤是指褐煤和次烟煤。硬煤是指无烟煤和烟煤。燃烧时,每吨褐煤的二氧化碳排放量通常高于硬煤。已探明储量不包括现有油田的可能储量、技术上可采但目前无法进行商业采收的后备资源以及尚未发现的化石燃料矿床。如果将这些额外的储量和资源包括在内,化石燃料燃烧的潜在二氧化碳排放量将大大增加。
风能是一种环保而高效的可再生能源。它不需要经常性开支来生产电力。但是利用风能有很多限制。首先,风力发电场只能建立在一年中大部分时间都有风的地方。风速还应高于 15 公里/小时,以保持涡轮机所需的速度。此外,还应有一些备用设施(如蓄电池)来满足无风时期的能源需求。建立风力发电场需要大面积的土地。对于 1 兆瓦发电机,发电场需要大约 2 公顷的土地。建立发电场的初始成本相当高。此外,由于塔架和叶片会受到雨水、阳光、风暴和飓风等自然变化的影响,因此需要高水平的维护。
技术进步正在推动化石燃料和生物燃料行业的创新。在化石燃料行业中,碳捕获和储存(CCS)技术旨在通过从工业过程中捕获CO 2并将其存储在地下,以减少温室气体的排放。增强的石油回收(EOR)技术提高了化石燃料提取的效率,从而延长了现有储量的寿命。在生物燃料行业中,基因工程,酶技术和生物处理方面的进步正在提高生物燃料生产的效率和可持续性。例如,正在开发具有较高生物质产量和较低水需求的转基因作物,以增强生物燃料原料的生产。
正在进行中,而且远远落后于计划。在加拿大的背景下定义化石燃料补贴和低效率的问题对于在这一过程中取得有意义的成果至关重要。对于前一点,定义化石燃料补贴一直是大量调查和讨论的主题,我们重申我们的建议(国际可持续发展研究所,2019 年),即加拿大采用世界贸易组织的定义,该定义被世界各地的清单流程广泛使用(Gerasimchuk 等人,2017 年;OECD,2012 年)以及联合国环境规划署等人(2019 年)最近向各国提出的关于衡量和报告补贴的建议。该定义包括向企业或行业提供的财务利益,包括直接转移、放弃收入、风险转移以及提供商品和服务。
这份 SBTi 化石燃料融资立场文件提出了一些标准,用于处理金融机构与化石燃料公司之间的活动。这些标准侧重于公司层面的化石燃料活动(即资金流向已知和未知的收益用途,例如现有石油和天然气公司的股权或债券)、项目层面(即为特定项目(例如新输油管道)提供的融资或便利)和投资组合层面(即所有化石燃料活动产生的温室气体 (GHG) 总排放量和财务风险)。这些标准针对金融机构设定的近期和净零科学基础目标 (SBT);SBTi 正在为化石燃料公司制定单独的、即将出台的方法和标准,以设定科学基础目标 (SBT)。
摘要:印度尼西亚目前正在进行能源转型,从严重依赖化石燃料转向更清洁的能源,以在 2060 年实现净零排放。除了减少对化石燃料的依赖之外,作为地热储量最多的国家之一,优化印度尼西亚的地热能源可能是促进能源转型的关键。本文的目的是通过分析外生和内生因素对这两个部门供应链结构的影响,阐述结合化石燃料不稳定和地热能源增长的转型过程。本研究采用涉及印度尼西亚地热利益相关者的研讨会,结合多层次视角 (MLP) 框架作为理论视角。研究发现,能源需求、环境意识、能源法规、能源供应链和地热潜力突破是与 MLP 组成部分相关的重要方面,即社会技术格局、社会技术制度和利基创新。社会技术环境是外生因素,它对能源部门制度施加压力,允许地热创新形式的利基创新渗透到化石燃料制度中,使其过渡到地热制度。过渡途径包括通过一系列计划和激励措施,可以分解化石燃料并建立地热能源的若干措施。
在多个生产和消费领域的技术突破以及能源使用方式的深刻社会经济变化的影响下,全球能源行业正在经历一场全球性变革。这一过程被称为“能源转型”。在本文中,作者研究了能源转型及其相关过程对主要化石燃料市场(石油、天然气和煤炭)的长期影响。研究表明,由于燃料间竞争的发展,所有化石燃料行业都将面临传统市场和其他能源来源的竞争显著增加。同时,能源政策和应对温室气体排放的努力将主要决定最大国家的能源平衡,并将对市场产生更大的影响。天然气是最环保的化石燃料,具有补充新可再生能源(NRES)发电的巨大潜力,受能源转型的影响最小。在未来 20 年,其消费量和产量预计将大幅增长。石油面临着来自环境立法和运输部门燃料间竞争加剧的巨大压力。煤炭消费很可能在 2040 年前达到峰值,但传统资源的枯竭正在支撑煤炭价格。煤炭市场消费量几乎不可避免地会下降。捕获排放的新技术只能部分减缓煤炭使用量下降的速度。