免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 imec International(IMEC International,根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(IMEC India Private Limited)、imec San Francisco(IMEC Inc.)和 imec Florida(IMEC USA Nanoelectronics Design Center Inc.)活动的注册商标。
摘要。在过去30年中,在增强混凝土作为建筑材料的能力方面取得了重大进步,重点是使用硅粉(SF)进行高强度混凝土应用。全球对SF作为Pozzolanic混合物的兴趣由于其在特定百分比使用时具有增强混凝土性能的能力而飙升。这项研究检查了在混凝土混合物中添加SF的效果。最重要的是在腐蚀环境中混凝土的性能,可以通过添加SF来增强。为了强度和寿命,需要高强度混凝土。在这项研究中,用不同比例的二氧化硅烟雾(按骨料量为5%,10%和15%)制备混凝土。测试样品以评估其强度。在通用测试机上施放,固化和测试的立方体和梁。的发现表明,通过添加二氧化硅烟雾可以提高压缩和弯曲强度。通过掺入二氧化硅烟雾可以显着增强混凝土的机械和耐用性能。这项研究的发现对建筑行业的使用有助于使用二氧化硅烟作为增强力量的经济选择。
摘要 - 我们已经开发了一种使用基于二氧化硅的分子印记聚合物(MIP)在卷心菜蓝色发射碳碳量子点(CQD)上涂覆并在光学上沉积的比率荧光传感器,用于检测多巴胺(DA)。物理化学表征确定了MIP和CQD的成功集成,该集成创建了用于监测的选择性有损模式共振(LMR)。优化了实验因子以获得最大响应,并且传感探针的动态响应范围为0.3至100 µm,检测极限为0.027 µm。该策略已成功地用于检测红酒,咖啡,苹果,橙子和宽豆汁样品中的DA,对其他潜在干扰物种(例如,肾上腺素,抗坏血酸,尿酸)具有可忽略不计的交叉反应性。这种新型的基于旋转的基于旋转的传感器具有对环境和生物样品的现场,便携式和现场感测的潜在潜力和多功能性。
我们证明,飞秒光脉冲的时间对比度是透明介电内部激光写作的关键参数,允许不同的材料修饰。特别是,二氧化硅玻璃中的各向异性纳米孔由10 7飞秒YB的高对比度产生:kgw激光脉冲,而不是低对比度的10 3 yb纤维激光脉冲。差异起源于纤维激光器,该纤维激光器将其三分之一的能量的能量存储在最高200 ps的脉冲后。通过激光诱导的瞬时缺陷吸收脉冲的这种低强度分数,其寿命相对较长,激发能量(例如自捕获的孔)极大地改变了能量沉积的动力学和材料修饰的类型。我们还证明,低对比度脉冲可以有效地创建层状双重结构,该结构可能是由四极杆非线性库驱动的。
该项目将涉及各种危险化学品和气体的使用和处理以及危险废物的产生。这些包括溶剂、陶瓷前聚合物前体、涂层前体、石墨工具、陶瓷纤维和粉末。加利福尼亚州圣地亚哥的 GA 站点的所有活动都将按照 GA 的危险工作授权流程进行,该流程由 GA 的许可、安全和核合规 - 健康与安全部门授权。所有活动都将在安全的实验室环境中进行,符合美国环境保护署 (USEPA)、加利福尼亚州有毒物质和控制部 (DTSC) 以及 GA 的化学和危险废物处理和管理规范。所有危险材料都将根据美国环境保护署、DTSC 和圣地亚哥县当地环境和安全法规进行管理。
摘要:数十年来,肿瘤疗法的问题吸引了许多研究人员的注意。开发新剂型以提高肿瘤学治疗功效并最小化副作用的有希望的策略之一是开发基于纳米颗粒的抗癌药物的靶向运输系统。在无机纳米颗粒中,介孔二氧化硅值得特别关注,因为其出色的表面特性和药物负载能力。本综述分析了影响介孔二氧化硅纳米颗粒(MSN)的细胞毒性,细胞摄取和生物相容性的各种因素,这构成了安全有效的药物输送系统发展的关键方面。对化学修饰MSN的技术方法特别注意以改变其表面特性。还讨论了调节药物从纳米颗粒中释放的刺激,有助于对体内递送过程的有效控制。这些发现强调了通过不同表面函数组,可识别的分子和聚合物在抗癌药物递送系统中的潜在使用的重要性。
摘要:氮化硅 (Si3N4) 是开发低损耗光子集成电路的理想候选材料。然而,标准光纤和 Si3N4 芯片之间的有效光耦合仍然是一项重大挑战。对于垂直光栅耦合器,较低的折射率对比度会导致较弱的光栅强度,从而导致较长的衍射结构,限制了耦合性能。随着混合光子平台的兴起,采用多层光栅排列已成为提高 Si3N4 耦合器性能的一种有前途的策略。在本文中,我们介绍了一种用于带有非晶硅 (α-Si) 覆盖层的 Si3N4 平台的高效表面光栅耦合器的设计。表面光栅完全形成在 α-Si 波导层中,利用亚波长光栅 (SWG) 设计的超材料,可通过单步图案化轻松实现。这不仅为控制光纤-芯片耦合提供了额外的自由度,而且还有助于移植到现有的代工厂制造工艺。使用严格的三维 (3D) 有限差分时域 (FDTD) 模拟,设计了一种超材料工程光栅耦合器,其耦合效率为 − 1.7 dB,工作波长为 1.31 µ m,1 dB 带宽为 31 nm。我们提出的设计为氮化硅集成平台提供了一种开发高效光纤芯片接口的新方法,可用于数据通信和量子光子学等广泛应用。
抽象的介孔二氧化硅是一种出色的低密度透明材料,其特征在于定义明确的纳米孔径。它有各种形态,包括整体,纳米颗粒和电影。该材料在众多技术应用中起着关键作用,无论是独立的还是混合复合材料的组成部分,是多种无机和有机材料范围的宿主。在合成路线中,我们考虑了Sol -Gel方法,因为它在产生纳米颗粒和散装中孔二氧化硅方面取得了巨大成功。本评论的重点是探索介孔二氧化硅和介孔二氧化硅的复合材料的光学性质,并深入研究如何在各个领域中利用中孔二氧化硅内的巨大空间:热和电气绝缘,光子学,环境设备,或用于药物和生物模拟的纳米型。这项全面的检查强调了介孔二氧化硅的多方面潜力,将其定位为在各个科学领域开发创新解决方案的关键参与者。
摘要:为了响应日益增长的时间信息处理的需求,神经形态计算系统正在越来越强调备忘录的开关动力学。虽然可以通过输入信号的属性来调节开关动力学,但通过备忘录的电解质特性控制它的能力对于进一步丰富了开关状态并提高数据处理能力至关重要。这项研究介绍了使用溶胶 - 凝胶过程的介孔二氧化硅(MSIO 2)膜的合成,从而可以创建具有可控孔隙率的膜。这些薄膜可以用作扩散的回忆录中的电解质层,并导致可调的神经形态切换动力学。MSIO 2回忆录表现出短期可塑性,这对于时间信号处理至关重要。随着孔隙率的增加,观察到工作电流,促进比和放松时间的明显变化。研究了这种系统控制的基本机制,并归因于二氧化硅层多孔结构内的氢键网络的调节,这在切换事件中显着影响阳极氧化和离子迁移过程。这项工作的结果提出了介孔二氧化硅,作为一个独特的平台,用于精确控制扩散的备忘录中神经形态开关动力学。关键字:介孔二氧化硅,扩散的回忆录,神经形态切换,短期记忆,离子动力学
光子集成电路(图片)最初是为满足光纤数据传输系统的需求而设计的[1]。近年来,我们目睹了光子整合技术的爆发,并具有不断增长的应用范围。高度活跃的字段包括光传感器[2],医疗应用[3],光学频率梳子生成[4]和量子技术[5]仅举几例。综合光子技术的持续进展是由大型生态系统的开发引起的,包括提供开放访问制造服务的铸造厂[6]。硅光子学基于高度成熟的CMOS制造过程,在此scenario中起着重要的作用[6]。尽管传统的绝缘体硅(SOI)技术仍然在CMOS平台中占主导地位,但基于氮化硅波导的图片对于某些应用来说尤其重要[7]。与硅引导结构相比,用氮化硅制造的结构可提供较小的线性和非线性固有传播损失,较低的热光系数以及一个较大的透明度区域,该区域为从可见的中部到中央验收的应用打开了平台。在负面,氮化硅的主要缺点源于其折射率小于硅的折射率。因此,氮化硅波导中的场限制较差,并且弯曲波导切片中的辐射损失变大[8]。这最终限制了集成设备中曲率的最小可接受半径,因此限制了集成规模。可以通过结合次波长的光栅[9]或侧凹槽[10,11]来修改波格的几何形状来减少弯曲整合波导中的辐射损失。尽管如此,这些设计策略需要其他非标准制造步骤。使用匹配的弯曲[12]允许通过将弯曲的总范围调整为前两种模式的节拍长度的倍数,从而减轻恒定曲率部分与直线输入和输出波导之间的过渡处的损失。可以应用于任意长度的弯曲部分的替代方法是通过将相对侧向移动应用于直的和弯曲的波导[13,14],以最大化不连续性的模式耦合。其他方案基于弯曲波导宽度[15-18]的进行性修改或使用三角学[19],Spline [10,20,21],Euler [22-25],Bezier [16,26]或N -djustable [27]功能。弯曲辐射损失也可以使用不同的算法最小化[28 - 34]。