全局:模拟整个Tokamak + Full-F:多尺度物理多离子物种主要离子 /杂质电子:绝热;被困动力学;完全动力学新古典和湍流传输之间的线性化碰撞操作员协同作用浸入边界条件:Sol -like和Limiter [Caschera 18,Dif -Pradalier 22]磁性ripple [Varennes PRL 22,ppcf,ppcf 23]
摘要 - 通过其协同化的化学,电和热效应对医疗应用显示出巨大的前景,可以诱导治疗结果。但是,对复杂生物表面的安全且可重现的血浆治疗构成了广泛采用用于医疗应用的CAP的重大障碍。对血浆和生物表面之间相互作用的预测建模,因此,由于缺乏对血浆表面相互作用的机械理解,可以跨越大量不同的长度和时间尺度,因此在很大程度上量化和预测血浆治疗结果的系统方法仍然难以捉摸。此外,生物瓶盖设备中的实时感测能力通常受到限制,由于治疗过程中的内在血浆和表面变异性以及对外部扰动的敏感性,这可能对等离子体处理有害。所有这些挑战都可以使生物表面的可再现和有效的血浆处理难以实现,这是由于人类手持帽装置的运行而导致的错误。机器学习和数据驱动的方法在以三种主要方式解决这些挑战方面特别有用:(i)数据驱动的难以模型的等离子表面相互作用和等离子体治疗结果的建模; (ii)实时学习血浆和表面诊断的数据分析; (iii)开发可靠有效的帽处理的预测控制器。本文讨论了机器学习在这些领域加速血浆医学研究的希望,朝着机器学习辅助和自动化的帽子处理复杂的生物表面处理。
b“全球对化石燃料枯竭和相关环境恶化的担忧刺激了人们对可再生和清洁能源的探索和利用进行了大量研究。能量存储和能量转换是当今可持续和绿色能源科学中最重要的两项技术,并在日常应用中引起了极大的关注。迄今为止,大量新型纳米材料已被广泛探索用于这些与能源相关的领域,然而,每种材料都有自己的问题,限制了它们满足高性能能量存储和转换设备要求的能力。为了满足未来与能源相关的应用的高技术要求,迫切需要开发先进的功能材料。在此,本期特刊旨在涵盖原创研究成果、简短通讯和多篇评论,内容涉及先进异质结构材料的合理设计和可控合成的创新方法及其在能源相关领域(如可充电电池、超级电容器和催化等)的吸引人的应用。”
摘要:人工神经网络 (ANN) 已成为机器学习 (ML) 中一种分析复杂数据驱动问题的有效方法。由于其时间效率高,它在物理学、光学和材料科学等许多科学领域都很受欢迎。本文提出了一种基于 ANN 的计算高效方法来设计和优化电磁等离子体纳米结构的新方法。在本研究中,首先使用有限元法 (FEM) 模拟纳米结构,然后使用人工智能 (AI) 对不同配对纳米结构的相关灵敏度 (S)、半峰全宽 (FWHM)、品质因数 (FOM) 和等离子体波长 (PW) 进行预测。首先,使用有限元法 (FEM) 开发计算模型来准备数据集。输入参数被视为长轴 a 、短轴 b 和分离间隙 g ,它们已用于计算相应的灵敏度(nm/RIU)、FWHM(nm)、FOM 和等离子体波长(nm)以准备数据集。其次,设计了神经网络,其中优化了隐藏层和神经元的数量,作为综合分析的一部分,以提高 ML 模型的效率。成功优化神经网络后,该模型用于对特定输入及其对应的输出进行预测。本文还比较了预测结果和模拟结果之间的误差。该方法优于直接数值模拟方法,可用于预测各种输入设备参数的输出。
厨房区,洗手间区,护理区,医院走廊和阿波罗医院的样本收集室
在通常称为升华生长的物理气相传输 (PVT) 中,保持在特定温度下的源材料会升华,其蒸气通过扩散和对流传输到保持在较低温度下的籽晶,在那里可以结晶。碳化硅 (SiC)、氮化镓 (GaN)、氮化铝 (AlN)、氧化锌 (ZnO) 和其他材料作为下一代功率器件引起了人们的关注。这些单晶制造工艺涉及高温和恶劣环境,使用氨和氯化氢等腐蚀性气体。
摘要 绿色革命基于赤霉素 (GA) 激素系统的遗传改造,通过“矮化”基因突变降低 GA 信号,使植物矮化,从而使植物适应现代农业条件。矮化的强 GA 相关突变体往往胚芽鞘长度缩短,由于干旱条件下幼苗出苗效果不佳,导致产量降低。这里我们提出赤霉素 (GA) 3-氧化酶 1 (GA3ox1) 作为大麦的另一种半矮化基因,它既能最佳地降低植物高度,又不限制胚芽鞘和幼苗的生长。通过对大量大麦种质进行大规模田间试验,我们发现天然的 GA3ox1 单倍型可适度降低植物高度 5 – 10 厘米。我们使用 CRISPR/Cas9 技术,生成了几个新的 GA3ox1 突变体并验证了 GA3ox1 的功能。我们发现,改变 GA3ox1 活性会改变活性 GA 异构体的水平,从而使胚芽鞘长度平均增加 8.2 毫米,这可以为在气候变化下保持产量提供必要的适应性。我们发现 CRISPR/Cas9 诱导的 GA3ox1 突变将种子休眠期增加到理想水平,这可能有利于麦芽行业。我们得出结论,选择 HvGA3ox1 等位基因为开发具有最佳身高、更长胚芽鞘和额外农艺性状的大麦品种提供了新的机会。
•国家大力发展科技,为探索未知世界、发现自然规律、带来技术变革提供政策和制度支撑,取得科学研究突破,促进经济社会发展,保障国家科技安全。
坚定目标对于实现美国的深空目标至关重要。新政府和国会应共同延续前几届政府和国会确立的扩大美国在太空领域领导地位的愿景,将月球作为登陆火星的垫脚石。通过充分利用 SLS,包括探索上面级、猎户座飞船和支持它们的探索地面系统;以及目前正与国际和商业伙伴共同开发的月球门户和载人着陆系统,NASA 将学会在距地球三天远的另一个行星上生活和工作,在深空建立永久的人类存在,同时利用人类探索和空间科学之间的协同作用。ii 在未来几十年里,保持 NASA 在实现这些关键功能的国家项目和其他公私合作伙伴关系或商业收购之间的平衡将至关重要。
背景。以剪切流为特征的磁化等离子体存在于许多自然环境中,例如地球磁层顶和太阳风。所涉及等离子体的无碰撞性质需要动力学描述。当剪切层的宽度为离子尺度数量级时,可以采用混合 Vlasov-Maxwell 方法。目的。这项工作的目的是在混合 Vlasov-Maxwell 描述中推导出具有平面剪切流的磁化等离子体稳态配置的显式形式。考虑两种配置:第一种是相对于体积速度倾斜的均匀磁场,第二种是均匀幅度可变方向的磁场。方法。我们通过结合单粒子运动常数获得了稳态离子分布函数,这是通过研究粒子动力学得出的。考虑背景电磁场的局部近似,通过分析推导出关于分布函数形式的初步信息。然后建立了数值方法来获得一般分布的解。结果。我们确定了显式分布函数,使我们能够获得密度、体积速度、温度和热通量的分布。还评估了分布函数中的各向异性和无磁性。在均匀斜磁场情况下检查了数值模拟过程中解的平稳性。结论。这里考虑的配置可以用作开尔文-亥姆霍兹不稳定性模拟中地球磁层顶的模型。
