化合物 2D-Cu 2 I 2 ( bs ) ( 1 ) 2D-Cu 2 I 2 ( bse ) ( 2 ) 经验式 C 6 H 4 Cu 2 I 2 N 2 SC 6 H 4 Cu 2 I 2 N 2 Se FW 517.05 563.95 空间群 P 2 1 P 2 1 /ma (Å) 4.1794(3) 4.1661(7) b (Å) 16.2245(13) 16.377(3)
金属磷化物纳米带因特殊的电子结构、大的接触面积和优异的力学性能而成为柔性光电子微器件的理想构建材料。本工作采用拓扑化学方法从结晶红磷纳米带(cRP NR)制备单晶磷化铜纳米带(Cu 3 P NR)以保留 cRP 形貌。Cu 3 P NR 用于在 ITO/PEN 基底上构建柔性光电忆阻器,以 Cu 3 P NR 的天然氧化壳作为电荷捕获层来调节电阻开关特性。基于 Cu 3 P NR 的忆阻器在不同机械弯曲状态和不同弯曲时间下均具有出色的非挥发性存储性能。从基于 Cu 3 P NR 的忆阻器中观察到光学和电学调制的人工突触功能,并且由于记忆回溯功能,使用 Ag/Cu 3 P/ITO 人工突触阵列实现了模式识别。拓扑化学合成法是一种通用方法,可用于生产具有特殊形态和特定晶体取向的纳米结构化合物。结果还表明,金属磷化物是未来光电神经形态计算的忆阻器中的优良材料。
• Loss of absorption due to absorber layer degradation (intrinsic, moisture or photoinduced) (A) • Migration of dopant from interlayer to absorber layer (A) • Phase separation (A) • Crystallographic changes (A) • Change in energy levels (A, I) • Hole/electron transport layer degradation (I) • Dopant diffusion into active layer (I) • Change of uniformity of interlayers (I)
飞秒激光器由于其独特的特征(例如超短脉冲宽度和极高的峰值强度)开辟了新的材料加工途径,这为将各种材料加工到其他常规激光器提供了卓越的性能[1,2]。具体而言,飞秒激光处理的最重要特征之一是它能够通过抑制受热影响区域(HAZS)的形成,以高质量地进行超高精确的微型和纳米化。飞秒激光器广泛用于商业应用,包括电子,汽车和医疗组件的微加工和修剪;玻璃和蓝宝石基材的涂抹和划分智能手机和显示器;通过纳米结构的Si太阳能电池,硒化铜硅化铜,硒化铜和无机太阳能电池制造抗反射表面;微光发射二极管显示的缺陷修复和边缘切割;和医疗支架的制造。迫切要求提高吞吐量,以进一步加速其商业化和工业应用。可以想象,可以通过增加激光脉冲的强度和/或重复率很容易地增加吞吐量。然而,较高的强度遭受了血浆屏蔽的影响,降低了消融效率,并且由于沉积过量的能量而经常诱导热损害[3]。重复率高于数百kHz会诱导热量积累会产生较大的HAZ,这不适用于高精度或高质量的微分化[4]。他们称此过程消融冷却。这些结果具有ilday的小组最近证明,具有GHz重复率的飞秒激光脉冲的突发可以提高消融效率,如图1 [5]所示。他们声称,在先前的脉冲沉积的残留热量之前,将目标材料从加工区域扩散,以提高消融效率(一阶较高)。他们进一步声称,消融材料的物理去除将消融质量中包含的热能带走,导致高质量消融,没有热效应。
随着芯片技术的出现,用于人工智能应用的高端封装变得越来越密集。其中,封装基板的密度也在不断提高,最近的基板倾向于采用非对称基板结构。然而,这种非对称基板会因芯片接合的加热过程而引起翘曲,因此在设计阶段控制基板中的铜剩余率以抑制翘曲是必不可少的。本文采用遗传算法来优化铜剩余率,并提出了一种考虑芯片接合时允许的翘曲值的算法流程。实际优化评估的结果证实了所提流程的优越性。
氮化铜(Cu3N)是一种在微电子和可再生能源领域有良好应用前景的材料,其质量在很大程度上取决于沉积条件,其中温度是一个关键参数。本研究采用反应溅射技术在环境温度至 300°C 的温度下沉积 Cu3N 薄膜。通过 XRD、VIS-NIR 光谱法和霍尔效应测量评估了薄膜的结构、光学和电学特性。为了确定薄膜的质量,使用了三个关键指标:位错密度、Urbach能量和载流子迁移率,这项工作的主要目标是在不损害材料化学完整性的情况下找到这些指标的最佳值,因为特性表明,在高温下,结构和电学变化表明Cu3N部分分解为金属铜。
氧化铜因其半导体性质、高化学稳定性和经济效益而被确立为技术中的重要化合物。这些特性使其成为储能应用的良好候选材料。此外,由于其独特的特性,例如高功率、长循环寿命和环保性,超级电容器(电池和传统电容器之间的互补装置)的发展受到了广泛关注。此外,氧化铜引起了人们对制备可用于超级电容器制备的适用正极的兴趣。同时,氧化铜容易与极化液体和聚合物混合,并且具有相对稳定的化学和物理性质。氧化铜的电化学特性取决于形态,在这些装置中可以优化电极材料的适当结构设计。在这篇综述中,我们将探讨氧化铜的合成及其作为阴极材料的氧化还原机理,以及各种氧化铜化合物在制备高性能超级电容器中的应用。
通过[Cu(PEN)2(OH 2)](CLO 4)2(C0)与胆汁ursoxyoxycholic Acid(UDCA)的反应制备了一种称为C0-UDCA的新型杂化铜(II)化合物。所产生的化合物能够抑制比前体C0和UDCA更有效的脂氧合酶。分子对接模拟阐明了与酶的相互作用,这是由于变构调节所致。新复合物通过激活未折叠的蛋白质反应,在内质网(ER)水平上对卵巢(SKOV-3)和胰腺(PANC-1)癌细胞的抗肿瘤作用。尤其是,在C0-UDCA存在下,伴侣BIP,促凋亡蛋白Chop和转录因子ATF6上调。完整细胞MALDI-MS和统计分析的组合使我们能够根据其质谱指纹区分未经处理和处理过的细胞。
要到2050年获得净净值,煤炭,天然气和石油发电厂已被可再生能源取代,以减少碳排放。1在可再生能源中,光伏(PV)能量已成为可靠且广泛使用的可再生能源。它有助于减少温室气体排放并提供低成本的电力。从2000年到2020年,全球光伏容量从1.4 gw增至760 gw。2当前,它产生了近4%的全球电力,预计将来会继续增长。2然而,在他们的生命结束时,太阳能电池板带来了处置的挑战:预计2050年的太阳能电池板废物将为8000万吨。3四种类型的太阳能模块目前在商业上使用:Crys-Talline Silicon(C-SI),Telluride镉(CDTE)(CDTE),铜辅助硅化铜(Cuin X GA 1-X SE 2或CIGS)和无晶硅(A-SI)。4在这些类型中,C-SI太阳能模块占全球光伏市场的90%以上。3因此,C-SI模块回收是最紧迫的。
几十年来。 [1] 目前商业化锂离子电池的能量密度受到层状结构正极材料(如 LiCoO 2 和 LiNixMnyCo1−x−yO2)的限制,由于材料晶格中 Li+ 主位点有限,只能提供小于 220 mAh g−1 的比容量。 [2] 此外,锂离子电池市场的快速扩张导致钴和镍价格飙升(2022 年钴金属价格高达 90 美元/千克)。因此,迫切需要探索高能量密度、低成本的无钴、无镍正极材料。转化型材料通常由 Fe、Cu、O 和 S 等价格较便宜且环境友好的元素组成,其容量比插层型电极材料高得多。 [3] 在各种转化化合物中,过渡金属氟化物(MF x )既提供> 2.0 V 的高氧化还原电位(由于金属氟化物键的高离子性),又提供大容量,因为每单位分子式允许多个电子转移,从而实现相当高的理论能量密度。[4] 转化正极面临的一个主要挑战是循环稳定性。优化的 Fe 基氟化物如 FeF 2 、FeF 3 、FeOF 和 Fe 0.9 Co 0.1 OF 可以稳定地充电/放电几百次循环。[5] 然而,Fe 基正极的能量密度仍然不够高。氟化铜(CuF 2 )比 Fe 基氟化物提供了更高的比能量密度(1874 Wh kg −1 ),因为它对 Li/Li + 的理论电位高达 3.55 V,理论容量为 528 mAh g −1 。[6]