1618 年,艾蒂安·布鲁莱 (Etienne Brulé) 穿过休伦湖颈部的北海峡;同年(或随后两年),他抵达苏圣玛丽,可能是第一位目睹苏圣玛丽的欧洲人。密歇根州的印第安人人口约为 15,000 人。1621 年,布鲁莱返回,探索苏必利尔湖沿岸,并记录了铜矿。1634 年,让·尼科莱 (Jean Nicolet) 穿过麦基诺海峡,沿着密歇根湖北岸旅行,寻找通往东方的路线。1641 年,艾萨克·乔格斯 (Isaac Jogues) 神父和查尔斯·雷姆博 (Charles Raymbault) 神父在苏圣玛丽举行宗教仪式。1660 年,雷内·梅斯纳德神父建立了第一个常规传教团,整个冬天都在基威诺湾举行。1668 年,雅克·马奎特神父接管了苏圣玛丽传教团,并在密歇根州的苏圣玛丽建立了第一个永久定居点。 1669 路易·若利埃沿底特律河、伊利湖和安大略湖向东行进。 1671 圣吕松爵士西蒙·弗朗索瓦在苏圣玛丽亚登陆,为路易十四宣称拥有广阔的五大湖地区,包括美国西部的大部分地区。马凯特神父建造了一座传教教堂,圣伊格纳斯由此建立。第一个军事前哨堡布德堡(后来被称为米奇里麦基诺堡)在圣伊格纳斯建立。 1673 若利埃和马凯特沿密西西比河而下。 1675 马凯特神父在路丁顿去世。 1679 拉萨尔爵士勒内·罗伯特·卡维利尔建造了五大湖上的第一艘帆船格里芬号,并在密歇根湖的一场风暴中沉没。➤ 拉萨尔在圣约瑟夫河河口建造了迈阿密堡。 1680 拉萨尔率领一小队人穿过下密歇根半岛,十天后到达底特律河,成为首批进入这片领土的欧洲人。1681 地图上最早使用“密歇根”一词。1686 法国人在休伦港建造圣约瑟夫堡。1690 克劳德·阿韦诺神父探索圣约瑟夫河上游;在尼尔斯现址建立传教团。1694 安托万·德拉莫特·卡迪拉克被任命为米奇利麦基诺 (圣伊格纳斯) 哨所指挥官;任职至 1697 年。1697 年在圣约瑟夫河 (尼尔斯) 上的传教团建造了圣约瑟夫堡。1701 卡迪拉克在底特律建立庞恰特雷恩堡,作为保护和确保毛皮贸易的永久定居点。圣安妮教堂是一座木结构建筑,由卡迪拉克的部下建造,并在底特律建城两天后落成。圣安妮教堂是美国第二古老的罗马天主教教区。秋天,卡迪拉克夫人和托蒂夫人作为该地区的第一批欧洲女性抵达堡垒。
4.4 生物资源范围和方法本节探讨了拟议项目对生物资源造成重大不利影响的可能性。Envicom 公司在与当地、州和联邦相关机构协商,并审查自然多样性数据库后,进行了一项研究,确定了该市及其周边地区是否存在此类资源。Envicom 公司于 1999 年 11 月 30 日和 12 月 2 日、9 日和 16 日对阿苏萨的植物进行了一次普遍调查,目的是对生物状况进行当代观察并绘制相关地图 1 。附录 E 中包含了实地调查期间观察到的维管植物列表,以及从莫里斯大坝到 Foothill Boulevard 的圣盖博峡谷的植物列表 2 。利用各种生物调查来确定已知或合理预期会出现在城市边界内的野生动物物种(脊椎动物)的范围。还参考了 1999 年 10 月的《山湾住宅开发项目环境影响报告草案》和 2002 年 10 月的《蒙罗维亚苗圃具体计划环境影响报告草案》。环境背景现状条件植被。阿苏萨大部分地区已经城市化。相对自然的植被群落和野生动物栖息地主要局限于圣盖博河及其支流剩余未开发的洪泛区,包括范塔塞尔峡谷、上鱼峡谷、罗伯茨峡谷和位于城市北部的圣盖博山高地丘陵地区。山麓与安吉利斯国家森林相邻,主要根据坡向和坡度包含各种物种。山麓的不同栖息地如图 4.4-1 所示,城市南部的栖息地如图 4.4-2 所示。圣盖博河北岸和西岸的陡峭南坡上生长着相当稀疏的植被,这些植被被归类为海岸鼠尾草灌木丛,主要有海岸鼠尾草 ( Artemisia californica )、加州荞麦 ( Eriogonum fasciculatum )、加州砖树 ( Brickellia californica )、惠普尔丝兰 ( Yucca whipplei ssp. parishii )、白鼠尾草 ( Salvia apiana )、叉骨灌木 ( Mirabilis californica ) 和局部密集的仙人掌 ( Opuntia littoralis ),还有零星的大型月桂叶漆树 ( Malosma laurina ) 和柠檬水莓 ( Rhus integrifolia ) 灌木。在一些地方,例如毗邻菲什峡谷步道入口和采石场的山坡,有毒的蓖麻籽 ( Ricinus communis ) 已严重侵袭了干燥的山坡。在朝北的山坡上,尤其是格伦多拉山脊的北侧以及菲什、范塔塞尔和罗伯茨峡谷的上部地区,植被更为茂密,灌木丛茂密。在这些中等湿润的山坡上,可以发现树木和较大的灌木,如山桃花心木 ( Cercocarpus betuloides )、托翁 ( Heteromeles arbutifolia )、吉姆灌木 ( Ceanothus oliganthus sorediatus ) ,以及散落的大叶枫 ( Acer macrophyllum ) 和大球果花旗松 ( Pseudotsuga macrocarpa )。1 实地调查由 Envicom Corporation 首席生物学家 Carl Wishner 进行。2 White, Scott。《圣盖博河流域特征》,1997 年,斯科特怀特生物咨询公司。
图 1 – 2024 年 1 月 10 天干旱指标 10 图 2 – 全球太阳辐射(全球太阳图集) 11 图 3 – 各国平均辐射 11 图 4 – 各国输电网扩展。ECCO 基于 ESMAP 数据阐述。12 图 5 – 适合大规模光伏安装的实际区域 12 图 6 – 大规模光伏潜力图。ECCO 基于全球太阳图集数据阐述 13 图 7 – 带有当前电力基础设施的大规模太阳能光伏潜力图细节。ECCO 基于全球太阳图集数据阐述。13 图 8 – 各国实际区域土地份额。ECCO 基于 ESMAP 数据阐述。14 图 9 – 各国大规模光伏理论容量。ECCO 阐述。15 图 10 – 全球风能密度 16 图 11 – 风能潜力图。 ECCO 根据全球风能地图集数据进行阐述,16 图 12 – 各国风能平均功率密度。17 图 13 – 各国陆上风能理论容量。ECCO 阐述。 17 图 14 – 北岸可再生能源装机容量——当前与 2030 年 NECP 的对比 19 图 15 – 南岸可再生能源装机容量——当前与 2030 年 NECP 的对比 22 图 16 – 地中海东部的市场模型 23 图 17 – Desertec 项目基础地图 24 图 18 – Entso-e 电网地图 27 图 19 – 各国能源供应总量(联合国,2021 年) 30 图 20 – 各国二氧化碳排放总量(Climatewatch,2024 年) 30 图 21 – 各国战略与 2030 年当前可再生能源装机容量对比 31 图 22 – 按来源和国家划分的工业最终消费份额(联合国,2021 年) 32 图 23 – 工业低温热能电气化份额,约 30% 为 1 TW [TJth] 32 图 24 –工业中高温供热的电力消耗约 30% 1 TW [TJth] 33 图 25 – 北非国家对地中海的出口,不包括石油和天然气 34 图 26 – 欧盟 CBAM 中包含的产品 35 图 27 – 按来源和国家/地区划分的电力生产份额(联合国,2021 年) 36 图 28 – 按燃料和国家/地区划分的化石燃料减排份额约 1 TW 36 图 29 – 按燃料和国家/地区划分的建筑物最终消费份额(联合国,2021 年) 37 图 30 – 工业中电气化建筑有用热能份额约 1 TW [TJth] 37 图 31 – 烹饪用电气化有用热能份额约 1 TW [TJth] 38 图 32 – 按方式和国家/地区划分的运输消费份额(联合国,2021) 38 图 33 – 1 TW [车辆] 中电气化占公路运输比重约为 4% 39 图 34 – 1 TW 可再生能源对地中海能源系统的影响 39 图 35 – 1 TW 可再生能源避免的二氧化碳排放量 40 图 36 – 1 TW 可再生能源产生的化石燃料减少量 40 图 37 – 氢气生产项目 (IEA) 41 图 38 – 欧盟氢能骨干计划 42 图 39 – 已实现或授权的 LNG 再气化能力(黄色)和预授权能力(紫色)。ECCO 详细说明。 44 图 40 – 根据国际能源署公布的承诺情景,天然气在一次能源供应总量中的作用 45 图 41 – 通向欧盟的天然气供应走廊和流量(ENTSOG,2024 年) 45 图 42 – 通向欧盟的天然气供应走廊分布(ENTSOG,2024 年) 46
约书亚·M·韦斯 1,2,3 , 米兰达·V·亨特 2 , 内莉·M·克鲁兹 2 , 阿丽安娜·巴吉奥里尼 4 , 莫希塔·泰戈尔 2 , 马伊伦 1,2,3 , 桑德拉·米萨莱 5 , 米开朗基罗·马拉斯科 5 , 特蕾莎·西蒙-维莫特 2 , 纳撒尼尔·R·坎贝尔 1,2,6,7 , 费莉希蒂纽厄尔 8,詹姆斯·S·威尔莫特 9,彼得·A·约翰逊 8,约翰·F·汤普森 9,10,11,乔治娜·V·朗 9,10,12,约翰·V·皮尔逊 8,格雷厄姆·J·曼 9,13,14,理查德·A·斯科耶 9,10,11,15,尼古拉·瓦德尔 8,16,艾米丽·D.蒙塔尔 2 , Ting-Hsiang Huang 2 , Philip Jonsson 17,18,19 , Mark TA Donoghue 17 , Christopher C. Harris 17 , Barry S. Taylor 17,18,19 , Tianhao Xu 6 , Ronan Chaligné 6 , Pavel V. Shliaha 20,21 , Ronald Hendrickson 21 , Achim A. Jungbluth 22 , Cecilia Lezcano 22 , Richard Koche 23 , Lorenz Studer 4 , Charlotte E. Ariyan 24 , David B. Solit 17,19,25 , Jedd D. Wolchok 17,25,26,27 , Taha Merghoub 27 , Neal Rosen 5 , Nicholas K. Hayward 8 , Richard M. White 2,28* 1 Weill康奈尔 / 洛克菲勒 / 斯隆凯特琳三机构 MD-PhD 项目,纽约,纽约州,10065,美国 2 癌症生物学和遗传学系,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 3 细胞和发育生物学项目,威尔康奈尔医学科学研究生院,纽约,纽约州,10065,美国 4 发育生物学,干细胞生物学中心,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 5 分子药理学项目,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 6 计算和系统生物学,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 7 生理学、生物物理学和系统生物学研究生项目,威尔康奈尔医学科学研究生院,纽约,纽约州, 10065,美国 8 QIMR Berghofer 医学研究所,昆士兰州布里斯班,4006,澳大利亚 9 悉尼大学澳大利亚黑色素瘤研究所,新南威尔士州悉尼,2006,澳大利亚 10 悉尼大学医学与健康学院,新南威尔士州悉尼,2050,澳大利亚 11 皇家阿尔弗雷德王子医院,新南威尔士州悉尼,2050,澳大利亚 12 皇家北岸医院,新南威尔士州悉尼,2065,澳大利亚 13 澳大利亚国立大学约翰·科廷医学研究院,澳大利亚首都领地,2601,澳大利亚 14 悉尼大学韦斯特米德医学研究中心癌症研究中心,新南威尔士州悉尼,2528,澳大利亚 15 新南威尔士州健康病理学研究所,新南威尔士州悉尼,2099,澳大利亚 16 昆士兰大学医学院,昆士兰州布里斯班,4072,澳大利亚 17 人类纪念斯隆凯特琳癌症中心肿瘤学和发病机制项目,纽约,纽约州,10065,美国 18 纪念斯隆凯特琳癌症中心流行病学和生物统计学系,纽约,纽约州,10065,美国 19 纪念斯隆凯特琳癌症中心玛丽-何塞和亨利 R.克拉维斯分子肿瘤学中心,纽约,纽约州,10065,美国 20 南丹麦大学 VILLUM 生物分析科学中心生物化学和分子生物学系,奥登斯 5230,丹麦 21 纪念斯隆凯特琳癌症中心微化学和蛋白质组学核心设施,美国纽约州纽约 10065 22 纪念斯隆凯特琳癌症中心病理学系,美国纽约州纽约 10065 23 纪念斯隆凯特琳癌症中心表观遗传学研究中心,美国纽约州纽约 10065 24 纪念斯隆凯特琳癌症中心外科系,美国纽约州纽约 10065