海上风电将成为实现脱碳经济的能源结构中的重要元素,并将为未来的能源安全做出贡献。与目前海上安装的风电数量相比,未来 10 年欧洲的海上风电数量将大幅增长。这一增长需要得到整个海上风电行业的大量投资支持——不仅是项目投资,还包括风力涡轮机和基础等制造能力的投资,以及安装和服务船和港口等资产的投资。只有在有可行的项目渠道(即将实现的项目,而不是基于投机而建的项目)前景,并且确定更广泛的供应链需要支持哪些产品(从风力涡轮机开始)时,才会对制造能力和资产进行此类投资。
1 TNO, Wind Energy Technology, Westerduinweg 3, 1755 LE Petten, The Netherlands 2 TNO, Climate, Air & Sustainability, Princetonlaan 6, 3584 CB Utrecht, The Netherlands 3 TNO, Reliable Structures, Molengraaffsingel 8, 2629 JD Delft, The Netherlands
为了加速优良苹果品种的早期发育,建立加速从幼苗期向成年期过渡的技术至关重要。阐明这一阶段转变背后的生理机制将有助于开发确保早期阶段转变的苹果幼苗生长系统。在此,在受控条件下对无融合生殖海棠 Malus hupehensis (Pamp.) Rehd. 进行水培栽培,以探索其在阶段转变过程中的植物激素动态。在 57 株幼苗中,有 15 株在发芽后约 10 个月内开花。开花率为 26.3%。开花幼苗的平均高度和平均茎周长分别比未开花幼苗高 27 厘米和 0.56 厘米。开花幼苗主茎顶端成熟叶片中脱落酸浓度在 70 节时高于未开花幼苗,到 90 节时降至未开花幼苗以下。开花幼苗与未开花幼苗主茎顶端成熟叶片中 GA 4 和细胞分裂素浓度无显著差异。这些结果表明,在受控环境下采用水培有利于促进湖北地黄的早期阶段转变。此外,维持主茎顶端成熟叶片中较低的脱落酸浓度水平可促进湖北地黄的阶段转变。
● 现有基础设施:北海已经拥有广泛的石油和天然气工业基础设施网络,包括适合二氧化碳储存的平台、管道和枯竭的油藏。这些可以重新用于生产可再生电力和低碳氢。在转型完成之前,欧洲工业仍产生的二氧化碳可以运输到北海并储存在枯竭的天然气田中。二氧化碳的碳捕获和储存(也称为 CCS)是减少温室气体排放以及使能源供应更加可持续的重要政策手段。然而,根据联合国气候机构 IPCC 的说法,这还不够。随着时间的推移,还需要负排放来及时遏制气候变化。为此,生物燃料和直接空气捕获与 CCS 相结合是一种解决方案。为此,北海的基础设施从长远来看也至关重要。 ● 海上风电潜力:凭借有利的风力条件和相对较浅的水域,北海有可能通过海上风电场满足欧洲未来电力需求的很大一部分。比利时、丹麦、德国和荷兰已设定目标,到 2030 年风电装机容量达到 65 千兆瓦。到 2050 年,这一数字应增长到 150 千兆瓦。如果再加上法国、德国、爱尔兰、挪威和英国的承诺,到 2050 年海上风电装机容量将超过 300 千兆瓦。● 靠近主要排放集群:北海靠近欧洲几个主要工业集群,是向寻求低碳运营的行业提供清洁能源的理想之地。
额外的计划和政策信息 在相关政策列表的末尾提供了一个额外的部分,用于提供额外的计划和政策信息。客户需要提供有关他们对海洋政策声明 (MPS)、海洋计划和政策目标的考虑的任何进一步信息,他们希望 MMO 在确定申请时将其考虑在内。如果提案不符合海洋计划或 MPS,客户应使用此部分解释原因,并包括他们认为 MMO 在评估申请时应该考虑的任何因素。海洋计划政策考虑示例 申请人需要在其申请中提供足够的信息,以便当局确定提案是否符合海洋计划政策。如果当局不能根据所提供的信息判断该决定是否符合计划,则它将退回申请(以寻求更多信息来提高海洋计划政策评估的质量)或拒绝授权。
生命科学训练的教育目标是使学生能够通过生物分子互动来全面地了解各种生活现象,并在现实生活中运用其知识和技术。关于这些原则和目标,我们寻求:1。学生不仅要研究基础生命科学,而且还研究应用生命科学的主要水平,例如医学,药物科学,兽医医学,农业,渔业科学和生物技术,并愿意获得先进的分析技术以及广泛的,深入的生活科学知识。2。具有高级科学研究技术能力的学生,并有强烈的意图成为私营公司,国家或地方政府的研究专业人员。<软物质>
现在存在的快速变化和相互依赖性需要不同的方法8。电力和天然气网络的发展密切相关,必须在已知未来需求之前发生。这将战略空间规划置于新能源系统范式的核心,因为它可以及时建立9个网络以满足未来的需求(所谓的预期投资)。空间计划需要有关技术,工业战略和土地使用的重大选择,并且必须根据专家和独立建议采取政府。这些新要求导致呼吁从传输网络的所有者那里删除计划和系统运营活动,并由一个独立的,政府拥有的机构向电力,天然气和其他相关网络责任10。
建议在上层拖网,铃声,钱包,围网和漂移网中划定了最相关的齿轮类型。有关齿轮类型,位置和捕鱼工作的更具体信息在随后的FMP开发过程中将提高评估该FMP内风险的能力,因此将来可能会改变一些风险评估。我们假设是FMP最初集中在《渔业法案》中的预防目标上,因此将采取行动来钓鱼MSY或其同等学历的目标库存;因此,我们对此建议的重点是直接对Sprat Stock的影响。对股票的管理被认为是英国MS描述符的风险,这些股票可能会受到猎物减少的影响,需要考虑超越当前MSY方法的股票管理。
© 新南威尔士州地方土地服务局,2024 年。免责声明:本出版物中包含的信息基于撰写本文时(2024 年 10 月)的知识和理解。随着知识的进步,提醒用户需要确保他们所依赖的信息是最新的,并与地方土地服务局的适当官员或用户的独立顾问核对信息的时效性。地图是根据新南威尔士州政府各部门提供的公开数据源汇编而成的,新南威尔士州和地方土地服务局及其员工、官员、代理人或公务员对因使用地图或其中的错误或遗漏而造成的任何伤害、损失或损害不承担任何责任。由于信息来源的差异(包括比例、日期和收集方法),地图中某些特征的位置可能会发生变化。
1. 执行摘要 1.1 退役计划 本文件包含 Durango 海底设施的退役计划 (DP)。设施所有者为 Perenco North Sea Limited,注册号为 SC293676(Perenco,运营商)。 1.2 退役计划设施要求:根据《1998 年石油法》,设施第 29 条通知持有人(见表 1.2)正在向海上石油环境和退役监管机构 (OPRED) 申请批准退役本计划第 2.1 条中详述的设施。在与公众、利益相关者和监管机构协商后,DP 按照国家和国际法规以及 OPRED 指南提交。本文件中概述的时间表是针对 2023 年第四季度开始的 7 年退役项目计划。1.3 简介 Durango 油田位于英国大陆架 (UKCS) 南部盆地的 48/21a 许可区块内,距离东英吉利的布莱克尼最近的登陆点以北约 37 公里 (km)。井口装置不在环境敏感区域内,最近的特别保护区 (SAC) 是 Inner Dowsing、Race Bank 和 North Ridge SAC,位于 Durango 以西 6 公里处。Durango 油田于 2005 年形成,海底装置由 Bridge North Sea Limited 安装,随后于 2008 年 10 月产出第一批天然气。Durango 装置通过 8 英寸 (”) 管道与 Waveney 平台连接。 Perenco 于 2011 年收购了 Durango 并成为其运营商。Durango 位于 Waveney 平台西南约 14.7 公里处。生产过去从单个 Durango 海底开发井 48/21a-4z(从 48/21a-4 井侧钻)通过 8 英寸输出管线 (PL) 2555 流向 Waveney 平台。Durango 海底油井的控制通过一条控制脐带管线 (PLU) 2556 进行,该管线与 Waveney 平台相连。在 Waveney,Durango 油井的产出物进入生产集管,产品通过生产分离器分离成气体、凝析油和水,以便计量各个流量。然后,气体、凝析油和水重新混合,并在自身压力下从 Waveney 流入 Lancelot 区域管道系统 (LAPS) 出口