KSA匪徒利用半导体固有的带隙的温度依赖性来测量温度。使用此技术,样品可以扩散反射或传输适当的波长范围内的光。在此过程中,样品可以通过将其某些能量转移到价带中的电子,从而选择性地吸收足够的能量,从而将其促进到传导带。但是,缺乏所需能量的光可以通过样品。从吸收到传输的过渡的能量定义了样品的光吸收边缘,并且取决于温度。ksa匪徒使用固态光谱仪分析了扩散反射或发射光的光谱,以确定吸收边缘的波长,通过一组材料特异性校准曲线将其转换为温度。
在不久的将来,建造量子计算机[1]的最新进展[1]在量子算法中广泛应用。有了量子计算机的优势,人们不仅可以加快基本算法,例如非结构化搜索[6]和分解[11],而且还可以加快机器学习算法[3]。在本文中,我们研究了强化学习的规范任务的量子加速,这是多臂匪徒中最佳的手臂识别。多臂匪徒(MAB) - 从LAI和ROBBINS引起[8] - 是一个重要的顺序决策模型(参考,[9])。在随机情况下,mAb由k臂组成,每个臂都与未知平均µ k的奖励分布相关。查询臂k∈K时:= {1,2,。。。,k},一个人从其奖励分布中获得的奖励,即
我们开发了一种一般理论,以优化顺序学习概率的频繁遗憾,其中有效的强盗和强化学习算法可以从统一的贝叶斯原理中得出。我们提出了一种新颖的优化方法,以在每一轮中产生“算法信念”,并使用贝叶斯后代做出决定。创建“算法信念”的优化目标,我们称其为“算法信息比”,代表了一种有效地表征任何算法的频繁遗憾的Intrinsic复杂性度量。据我们所知,这是以通用且最佳的方式使贝叶斯型算法保持不含和适用于对抗设置的第一种系统性方法。此外,算法很简单且通常可以实现。作为一种主要应用,我们为多臂匪徒提供了一种新颖的算法,该算法在随机,对抗性和非平稳环境中实现了“最佳世界”的表现。我们说明了这些原理如何在线性匪徒,强盗凸优化和增强学习中使用。
部分监测(Rustichini,1999)是无状态顺序决策的灵活框架。部分监视模型捕获了标准的多臂和线性匪徒的设置,半信息反馈模型,动态定价和决斗匪徒的变体,仅举几例。部分监视被形式化为学习者和环境之间的基于圆形的游戏。在每回合中,学习者选择一个动作,环境提供了反馈。此外,与每个动作相关的(未知)奖励,但与强盗模型不同,不一定直接观察到奖励。相反,为学习者提供了奖励和反馈如何相关的描述。为了最大程度地提高累积奖励,学习者需要在导致信息反馈和高奖励的行动之间取得仔细的平衡,这是探索 - 开发难题的本质。更具体地,学习者需要收集数据,使其能够识别最佳动作,同时最大程度地减少相对于最佳动作(称为遗憾)的次优最佳动作的成本。
强化学习(RL)在使大语言模型(LLMS)与人类偏好相结合并提高其执行复杂任务的能力方面起着至关重要的作用。但是,由于使用多种模型和大量的在线抽样培训(例如PPO),当前的方法要么需要大量的计算资源(例如,PPO),要么被用作匪徒问题(例如,DPO,DRO),通常在多步理学任务中挣扎,例如数学问题和复杂的推理,涉及较长的思想链条。为了克服这些局限性,我们引入了直接的Q-功能优化(DQO),该优化将响应生成过程作为马尔可夫决策过程(MDP),并利用软actor-Critic(SAC)框架来优化语言模型直接参数参数的Q函数。DQO的MDP公式提供了比基于匪徒的方法的结构优势,从而实现了更有效的过程监督。对两个数学解决问题数据集GSM8K和数学的实验结果表明,DQO胜过以前的方法,将其确定为一种有希望的离线强化学习方法,以使语言模型对齐。
摘要 - 机器人武器应该能够学习新任务。这里的一个框架是强化学习,在该学习中,机器人具有编码任务的奖励函数,并且机器人自主学习的动作以最大程度地提高其奖励。现有的强化学习方法通常将此问题构成马尔可夫决策过程,并学习政策(或政策层次结构)以完成任务。这些政策原因是机器人臂需要采取的数百个细粒度的动作:例如,向右移动稍微移动或旋转几个度。但是我们希望机器人执行的操作任务通常可以分解为少数高级运动:例如,到达对象或转动手柄。在本文中,我们提出了一种基于通道的无模型增强学习方法。机器人现在没有学习低级策略,而是学习路点的轨迹,然后使用现有控制器在这些航路点之间进行插值。我们的关键新颖性是将基于Waypoint的设置作为一系列多臂匪徒构建:每个匪徒问题都对应于机器人运动沿线的单路点。从理论上讲,与标准框架相比,对这种重新制定的理想解决方案的遗憾界限较低。我们还引入了一个近似的后固定解决方案,该解决方案一次构建机器人的运动点。跨基准模拟和两个现实世界实验的结果表明,这种提出的方法比最先进的基线更快地学习新任务。请参阅此处:https://youtu.be/mmed-lyfq4y
o详尽的搜索(BFS / DFS)o启发函数 /合并知识o启发式搜索(最佳搜索 / a*) GA实施:突变,跨界,选择,繁殖•加固学习(RL)o RL简介:代理,环境,行动,政策,政策,奖励匪徒问题(探索与剥削)o马尔可夫决策过程o通用政策迭代o蒙特 - 卡洛方法o时间差异学习(SARSA / Q学习)•神经网络(NN)< / div>
牛津英语词典定义精确医学是“旨在优化特定患者组的效率或治疗性有益的医疗服务,尤其是使用遗传或分子培养。”这并不是一个全新的想法:远古时代的医生已经认识到,医疗需要考虑患者特征的个体变化(Konstantinidou等,2017)。然而,现代的精确医学运动是通过事件的影响来实现的:诸如遗传学和药理学的科学进步,移动设备的技术进步和可穿戴传感器的技术进步以及计算和数据科学方面的方法论进步。本章是关于强盗算法的:与精密医学特殊相关的数据科学领域。的根源是贝尔曼,罗宾斯,莱和其他人的开创性作品,匪徒算法已经占据了现代数据科学的中心位置(请参阅Lattimore和Szepesvári(2020)的书,以进行最新处理)。强盗算法。由于精密药物专注于使用患者特征来指导治疗,因此上下文匪徒算法特别有用,因为它们旨在考虑此类信息。之前已经审查了Bandit算法在移动健康和数字表型等精确医学领域的作用(Tewari和Murphy,2017; Rabbi等,2019)。由于发表了这些评论,因此Bandit算法继续在移动健康中找到使用,并且在有关强盗算法的研究中已经出现了一些新的主题。本章是为诸如统计,机器学习和操作研究等领域的定量研究人员编写的,他们可能有兴趣更多地了解已在移动健康中使用的Bandit算法的算法和数学细节。我们已经组织了本章以实现两个目标。首先,我们要在Bandit算法中简明说明基本主题。第2节将帮助读者熟悉Precision Medicine和Mobile Health的应用工作中经常出现的基本问题设置和算法(例如,参见Paredes等人。(2014); Piette等。(2015); Rabbi等。(2015); Piette等。(2016); Yom-Tov等。(2017); Rindtor Q.等。(2019); Forman等。(2019); Liao等。(2020); Ameko等。(2020); Aguilera等。(2020); Tomkins等。(2021))。第二,我们要重点介绍一些对移动健康和精确药物应用很重要的高级主题,但其全部潜力仍有待实现。第3节将为读者提供有关非平稳性,对损坏的奖励,满足其他限制,算法公平和因果关系的强大的匪徒文献的有用入口。
1。Ally Yalei du ∗,Daniel Ngo ∗和Zhiwei Steven Wu。对下游决策制定的模型多样性。国际学习表征会议(ICLR),2025。2。Xinyan Hu ∗,Daniel Ngo ∗,Zhiwei Steven Wu和Aleksandrs Slivkins。激励组合匪徒探索。神经信息处理系统(神经),2022。3。Daniel Ngo ∗,Giuseppe Vietri ∗和Zhiwei Steven Wu。在Linearmdp中,差异私人探索改善了遗憾。国际机器学习会议(ICML),2022年。4。Keegan Harris,Daniel Ngo ∗,Logan Stapleton *,Hoda Heidari和Zhiwei Steven Wu。战略工具变量回归:从战略反应中恢复因果关系。国际机器学习会议(ICML),2022年。5。Daniel Ngo ∗,Logan Stapleton ∗,Vasilis Syrgkanis和Zhiwei Steven Wu。使用算法仪器激励探索。机器学习国际会议(ICML),2021。