摘要 三阴性乳腺癌 (TNBC) 表现出侵袭性的临床病程、高度的转移潜能并且与较低的存活率有关。由于缺乏雌激素受体 (ER)、孕激素受体 (PR) 和人表皮生长因子受体 2 (HER2) 的表达,这种亚型对传统的靶向疗法没有反应。当前化疗药物相关的不良且有时危及生命的副作用促使人们开发更有针对性的治疗方案。信号转导和转录激活因子 3 (STAT3) 是一种与乳腺癌 (BCa) 进展有关的转录因子,靶向该因子已被证明是一种有效的体内和体外阻止癌症生长的方法。目前,尚无 FDA 批准用于 TNBC 的 STAT3 抑制剂。尽管 FDA 批准的抗精神病药物匹莫齐特被认为在几种癌症中起到 STAT3 抑制剂的作用,但它在该通路上的作用在 TNBC 中仍未得到探索。由于这种侵袭性癌症的异质性,无法对 TNBC 疗法应用“一刀切”的方法,我们假设 STAT3 可以作为指导匹莫齐特治疗的新型反应生物标志物。使用代表四种 TNBC 亚型(基底样 1、基底样 2、间质样、间质干细胞样)的人类细胞系,我们当前的报告表明匹莫齐特显著降低了它们的侵袭和迁移,这种效果是通过酪氨酸残基 705 (Tyr705) 上的 STAT3 磷酸化预测的。从机制上讲,匹莫齐特治疗导致的磷酸化 STAT3 (Tyr705) 抑制导致下游转录靶标(如基质金属蛋白酶-9 (MMP-9) 和波形蛋白)下调,这两者都与侵袭和迁移有关。识别对 TNBC 治疗反应的生物标志物是精准医疗领域的一个活跃研究领域,我们的研究结果提出磷酸化 STAT3 (Tyr705) 作为一种新的生物标志物来指导匹莫齐特治疗作为侵袭和迁移的抑制剂。
表 2. 可用的第一代和第二代抗精神病药 第一代(典型)抗精神病药 氯丙嗪 氟奋乃静 氟哌啶醇 洛沙平 奋乃静 匹莫齐特 噻沃噻吨 硫利达嗪 三氟拉嗪 第二代(非典型)抗精神病药 阿立哌唑 阿塞那平 布瑞哌唑 卡利拉嗪 氯氮平 伊潘立酮 鲁拉西酮 奥氮平 帕利哌酮 匹莫范色林 喹硫平 利培酮 齐拉西酮
尚未对依他普仑与其他延长 QT 间期的药物联合使用进行药代动力学和药效学研究。不能排除依他普仑与这些药物的叠加效应。因此,禁止将依他普仑与延长 QT 间期的药物联合使用,例如 IA 类和 III 类抗心律失常药、抗精神病药(例如吩噻嗪衍生物、匹莫齐特、氟哌啶醇)、三环类抗抑郁药、某些抗菌剂(例如司帕沙星、莫西沙星、红霉素 IV、喷他脒、抗疟治疗药物尤其是卤泛群)、某些抗组胺药(阿司咪唑、咪唑斯汀)。
规章制度表 7. 客户向公司提出的投诉 70 8. 账单调整 70 至 72 9. 客户要求终止服务 72 10. 部分付款和预算付款计划 73 11. 公司拒绝或终止服务 74 至 76 12. 冬季困难重新连接 77 13. 请求测试 78 14. 进入物业 78 15. 服务线路 78 16. 合同转让 79 17. 合同续签 79 18. 关闭和恢复燃气服务 79 19. 输电干线服务客户的特殊规则 79 至 80 20. 业主同意 80 21. 客户的设备和安装 81 22. 公司的设备和安装 81 23. 公司财产的保护 82 24. 客户责任 82 25. 燃气泄漏或不安全情况通知 82 26. 特殊规定 – 大用量客户 82 27. 专属服务 83 28. 燃气交付点 83 29. 配气干线延伸 83 至 84 30. 服务线路延伸 84 31. 市政特许经营费 85 32. 连续或统一服务 85 33. 计量基数 86 34. 服务性质 86 35. 限量令 86 至 88 36. OFO 命令 88A 至 88B (N) 37. 一般规则 89 (T)
经过半个世纪的微型化,微电子技术面临着两大问题,即缩小尺寸极限和能耗。为了克服这些挑战,新策略的探索包括寻找新材料、新物理和新架构。在此背景下,量子材料引起了广泛关注。特别是,作为一类广泛的量子材料的莫特绝缘体,根据传统的能带理论预计是金属的,但由于现场电子-电子排斥而具有绝缘性。在这样的系统中,电子掺杂或外部压力可能会驱动绝缘体到金属的转变 (IMT),并导致高 Tc 超导或巨磁电阻等显著特性。在过去的几十年里,莫特绝缘体中的填充或带宽控制 IMT(即莫特转变)一直是基础研究的热门话题 [1]。然而,由于一个非常简单的原因,这些 IMT 在应用中的使用仍然相当稀少。事实上,在实际设备中,压力或掺杂并不是容易控制的参数。我们 IMN 的研究小组证明,电场是破坏莫特绝缘状态并诱导绝缘体向金属转变的有效参数 [2]。我们首先证明了单晶上的非挥发性和可逆性转换,并进一步在多晶薄层上验证了莫特绝缘体家族的几个成员的转换 [3]。这种现象被称为“电莫特转变”(EMT),在微电子应用方面前景广阔,并可能为基于莫特绝缘体的新型电子器件打开大门,称为 Mottronics [4]。进一步的研究表明,这种 EMT 是由大量热电子的产生引起的,导致丝状导电路径内发生电子雪崩 [5]。我们证明了这种机制正在驱动具有不同化学成分的多种莫特绝缘体中的 EMT,例如硫族化物 AM 4 Q 8(A=Ga、Ge;M=Nb、V、Ta、Mo;Q=S、Se、Te)和 Ni(S、Se) 2、氧化物 (V 1-x Cr x ) 2 O 3 和分子系统 Au(Et-thiazdt) 2 [6]。非挥发性 EMT 的特性适合于信息存储:“莫特存储器”与基于金属氧化物 (OxRAM) 或相变材料 (PCRAM) 的 ReRAM 相比显示出明显的优势 [7]。此外,我们还表明,受到一连串电脉冲作用的莫特绝缘体可能基于挥发性 EMT 表现出泄漏集成和起火行为。因此,莫特绝缘体可以复制人类大脑中神经元的主要功能,这使得它们可能适合构建人工神经元和硬件人工神经网络 [8]。一个有趣的颠覆性解决方案确实是用节能的人工神经元和突触“硬件”网络(即基于莫特绝缘体的构建块)取代能源密集型的软件网络。从长远来看,我们最近基于超快激光的研究表明,在基于 Mott 绝缘体的电光或全光设备中,可以实现皮秒范围内的最终切换时间 [9]。本演讲将首先回顾电 Mott 跃迁以及此特性所实现的新功能。然后,它将介绍一些 Mottronics 设备的示例,特别是用于数据存储和人工智能应用的示例。