本文介绍了微带宽带微波放大器设计和分析所涉及的程序。用于系统设计,仿真,优化和分析,采用了计算机辅助设计(CAD)工具,即Angilent Advance Design System(ADS)。对放大器设备-FLC317MG-4 FET进行了测试,以稳定性测试,并观察到在2至6 GHz频带之间无条件稳定。研究了两个可能的理想匹配电路,以确定具有最大传感器功率增益的最佳匹配电路。观察到,具有平行开路存根的四分之一波变压器比其他匹配电路在频率范围更大(带宽/宽带更大的频率(带宽/宽带)的范围更高。因此,它是使用微丝线进行宽带放大器设计的,并以3.5至4.5 GHz的带宽实现了约9.8 dB至10.118 dB的最大扁平增益。
2019 年,荷兰埃因霍温理工大学开发了一种隧道二极管,允许输入 2.4 GHz 的 −25 至 −10 dBm 微波功率,与传统 SBD 相比,隧道二极管具有更高的 RF-DC 转换效率。使用由卡诺极限确定的高阻抗(Q 匹配电路)天线也可以获得高 RF-DC 转换效率。利物浦大学开发了一种阻抗 >400- Ω 的低功率宽带整流天线,它在 0.9-1.1 GHz 和 1.8-2.5 GHz 之间实现了 75% 的 RF-DC 转换效率。 2016 年,日本金泽工业大学设计了一种 1.6k 高阻抗整流天线,用于收集 500MHz 的数字电视信号,在 -15dBm 的 RF 功率输入下可获得 49% 的 RF-DC 转换效率,在 -30dBm 的输入功率下可获得 8.7% 的效率
“经典阴影”是未知量子状态的估计值,它是由适当分布的随机测量在该状态的副本上构成的[1]。在本文中,我们分析了使用随机匹配电路获得的经典阴影,这些阴影与费米子高斯大学相对应。我们证明,在连续的匹配电路组上,HAAR分布的前三个时刻等于仅在也是Clifford Unitaries的Matchgate电路上的离散均匀分布的矩等于;因此,后者形成了“匹配3设计”。这意味着由两个集合产生的经典阴影在功能上是等效的。我们展示了如何使用这些匹配阴影来有效估计任意量子状态和费米子高斯状态之间的内部产品,以及本地费米子操作员和其他各种数量的期望值,从而超过了先前工作的能力。作为一个具体的应用,这使我们能够应用波函数约束,这些限制控制量子辅助尺寸量子量蒙特卡洛算法(QC-AFQMC)[2]中的fermion符号问题,而无需原始方法指数后处理成本。
摘要 :低噪声放大器 (LNA) 是接收器最重要的前端模块。LNA 的噪声系数 (NF) 和散射参数影响整个接收器电路的整体性能。如今,在 5G 技术时代,传输数据的质量得到了提高。因此,需要更高的带宽来以更高的速度传输数据。在这种情况下,通信模块需要更新。这项研究是为了推动 LNA 的发展。LNA 设计的主要目标是降低噪声系数和回波损耗。本文旨在设计一个带宽为 400 MHz 的 2.4 GHz LNA。该电路是借助单短截线微带线设计的。我们试图将微带线的长度保持在尽可能短的范围内。这项工作中使用了晶体管 ATF-21170 砷化镓场效应晶体管 (GaAs FET)。该电路在 Keysight Advance Design System (ADS) 中进行了仿真。该放大器采用标准方法手工设计。LNA 在 2.2 GHz 至 2.6 GHz 的频率范围内无条件稳定。为了构建放大器的阻抗匹配电路,使用了史密斯图。观察到 LNA 增益 (S21) 大于 15.3 dB,NF 小于 1.2 dB,输入回波损耗 (S11) 小于 -13.3 dB,输出回波损耗 (S22) 小于 -17.1 dB,带宽为 400 MHz,范围从 2.2 到 2.6 GHz。据作者所知,这在文献中从未出现过。
摘要:存在不同的可植入天线设计,可以根据使用域和植入空间建立与植入设备的通信。由于其性质和目的,这些天线具有许多针对各种特征的标准,例如带宽,多播行为,辐射模式,增益和特定的吸收率(SAR)。这在没有在这些关键参数的任何一个重要的情况下实现令人满意的结果时提出了挑战。此外,许多现有设计不遵循特定的方法来获得结果。测量这种制造结构的不同参数需要特殊的条件和特殊环境,以模仿应该放置的组织。在此类问题上,使用生物学或合成幻象的使用被广泛用于验证模拟中所述的内容,并且存在许多公式来创建此类幻影,每种幻象都有其优势和缺点。在本文中,由Koch分形结构的第一次迭代得出的微型双带结构旨在用MIC(医疗植入物通信系统)和ISM(工业,科学,科学,医学)2.4 GHz频段操作皮肤下方2 mm的皮肤下方2 mm。设计的目的是从具有某些行为的常用形状中得出结构,同时保持微型化,并轻松设计双束带不可原属的天线。多个频带用于多元化用途,因为诸如MICS频段之类的频段主要用于遥测。与文献中发现的各种结构相比,该结构的特征不仅是其低调的特征,其尺寸为17.2×14.8×0.254毫米3,而且其设计易于设计,谐振频率的独立转移以及对匹配电路的需求不足和匹配销和缩短销(通过)。它表现出令人满意的性能:MICS频段中23 MHz的带宽和ISM 2.4 GHz频段附近的190和70 MHz,并且分别在Azimuth和高架辐射模式中的后一种− 18.66和-17 dBi的频带中测量的增益。为了验证天线在模仿环境中的特性,探索了文献中发现的两个简单的幻影公式并进行了比较,以便在精确性和易于制造方面识别最佳选择。
摘要:该项目为电动汽车(EV)提供了动态的无线充电系统,将Arduino Uno MicroController作为主要控制器。该系统具有嵌入在车道基础设施中的发射器(TX)线圈,并安装在车辆单元中的接收器(RX)线圈,在运动中可以连续充电。通过电磁诱导将能量从TX线圈无线传递到RX线圈。Arduino Uno微控制器充当中央控制单元,管理电力传输,监视充电状态和调节电压水平。集成的物联网(IoT)传感器可实时数据收集有关充电参数和电池健康,提高效率和安全性。该系统的效率水平达到67%,同时提供安全性,可靠性,较低的维护和较长的产品寿命。关键字:无线电源传输;电动汽车;电感动力传递;电池充电等I.引言世界遭受了许多没有电力的问题。在日常生命中,电力在许多应用中很重要,例如移动,笔记本电脑,相机,传感器,仿生植入物,卫星和油平台。在1891年,尼古拉·特斯拉(Nikola Tesla)提出了无线功率传输的想法,他展示了第一个用于照明的无线电源传输系统[1]。有时在小电源插座上连接太多电线会变得不方便和危险。托马斯·帕克(Thomas Parker)在1884年实际实施的第一辆电动汽车。在主要源和二级负载之间有一个较大的空气间隙。直到1859年可充电电池都无法用于储存电力,法国物理学家加斯顿工厂发明了铅酸电池并减少了缺点。电动汽车在许多国家 /地区更受欢迎,电动汽车尺寸很小,例如公共汽车,汽车大,两轮车,电动自行车很小。电动汽车与普通车辆相同,但是电动汽车用于推进目的中,用于电动机电池的电源[1]。与常规的铅酸电池相比,可用的新型可充电电池可用,因此可以使用较小的电池,而储能容量也更高,并且重量也较小。充电过程对于插入电动汽车的用户来说是笨重的,因为要为电池充电,需要从车辆直接连接的充电器,或者有时电池已卸下用于充电目的。通过利用电感功率传输技术,简化了困难的充电过程[1]。电感功率传递(IPT)方法是设计是通过从静态发射器到一个或多个可移动的次级接收器来无线传递电源[1] - [7]。根据电源要求,电源是单相或三个阶段。WPT系统通常由电源,发射器(主要线圈),接收器(次级线圈),微控制器,电池,传感器,匹配电路组成[8]。取决于线圈IPT系统的磁性结构是分布的或集结的拓扑结构。AC电流是通过电源以非常低的频率在发射器线圈中产生的。通过磁场单主要线圈和多个二级线圈耦合。主要线圈中的恒定频率电流正在为WPT创建一个强大而可控的磁场。电力电子技术的进步已经发现了许多基于IPT系统的新应用,例如用于专业仪器的无线电源,在大空气间隙上为电动汽车的无线电池充电,材料处理这些是IPT系统的高功率应用[1] - [7]。其他示例包括医疗植入物,手机,照明这些是IPT系统的低功率应用[1] - [7]。IPT系统的相互耦合通常为一周。接收器线圈从发射器线圈中电离,并沿着长发射器轨道移动。IPT系统的优点在下面列出,[1] - [7],[10],