匹配负载系统通常,任何放大器在驱动低阻抗负载(例如 2 Ω)时都会承受更大的压力。在高功率下,普通放大器可能会过热并进入保护状态,并且可能还会扰乱音频信号。Lab.gruppen 的 fP 系列放大器除外。MLS® 让您可以控制放大器的功率。MLS® 代表“匹配负载系统”。只有 Lab.gruppen 提供此技术。典型场景:在高阻抗(例如 8 Ω)下,普通放大器通常提供 100 V 的最大输出电压和 12 A 的最大输出电流,相当于 1200 W 的输出功率。现在,当您添加第二个并联扬声器时,阻抗会降至 4 Ω。放大器自然会尝试提供两倍的电流 (24 A),但这是不可能的。压力!放大器继续提供电流
•希望用更好的总体“系统”•现有的系统研究•现有的CHW效率超过2.0 kW/ton(包括所有冷水机,泵等)•部分是由于冷却器和泵的转折以匹配负载•同时,仔细观察负载:•并非所有过程都需要水:38-44 O F•某些过程需要简单的水:70 O F
摘要 —本文介绍了一种用于解决晶圆上测试系统中探针-探针泄漏引起的误差项的先进校准方法。介绍了一种新的 12 项误差模型,用于晶圆上测试系统,包括矢量网络分析仪 (VNA)、频率扩展器(如果有)、电缆/波导、探针、探针接触垫和探针-探针泄漏。开发了一种两步校准过程和一种算法,该算法具有四个片上校准标准,包括一个未定义的直通、两对未定义的对称反射(例如开路-开路和短路-短路对)和一对已知匹配负载。此外,还提出了一种改进的匹配负载电路模型以提高精度。已经在 0.2 GHz 至 110 GHz 频率范围的失配衰减器上测试了该校准方法,并将结果与数值模拟和现有校准方法进行了比较。结果表明,衰减器的 |S 11 | 更连续,|S 21 |提高了1.7 dB。显然,所提出的校准方法具有更简单的校准过程和对校准标准的要求不那么严格,而校准标准是毫米波和太赫兹频率下晶圆系统校准的关键。更重要的是,新的校准方法更适合DUT具有可变长度的测量。
为了实现真正的 24 x 7 x 365 CFE 策略,客户不仅需要了解他们的每小时需求,还需要了解电网中可用的无碳供应以及当地的排放率。然后,客户可以制定策略来按小时匹配负载和供应,从而最大限度地减少能源消耗对排放的影响。这正是 Constellation 可以提供帮助的地方,我们的风能、太阳能、水力和核能发电供应组合、供应管理和数据分析可以提供帮助。我们与 Microsoft 合作,正在开发一款按小时匹配的应用程序,让客户能够透明、独立地了解他们的可持续发展工作,并提供分析和供应解决方案建议,以在实现碳减排目标方面取得可量化的进展。