摘要 — 心智理论 (ToM) 是一种不断发展的能力,对人类的学习和认知有重大影响。早期发展的心智理论能力使人能够理解他人的目标和抱负,以及与自己不同的思维方式。自闭症谱系障碍 (ASD) 是一种普遍存在的广泛性神经发育障碍,参与者的大脑似乎以整个大规模大脑系统的弥漫性变化为标志,这些大脑系统由功能上连接但物理上分离的大脑区域组成,这些大脑区域在意志行为、自我监控和监控他人意图方面出现异常,通常称为心智理论。虽然功能性神经成像技术已被广泛用于确定与心智理论有关的神经相关性,但具体机制仍需阐明。当前大数据和人工智能 (AI) 框架的可用性为系统地识别自闭症患者和正常发育患者铺平了道路,通过识别神经相关性和基于连接组的特征来生成准确的社会认知障碍分类和预测。在这项工作中,我们开发了一个 Ex-AI 模型,该模型量化了正常发育和 ASD 个体之间 ToM 大脑区域变异的共同来源。我们的结果确定了一个特征集,可以在该特征集上训练分类模型以学习特征差异并更清晰地对 ASD 和 TD ToM 发展进行分类。这种方法还可以估计 ASD ToM 亚型内的异质性及其与基于社会认知障碍的症状严重程度评分的关联。基于我们提出的框架,我们使用可解释 ML (Ex-Ml) 模型获得超过 90% 的平均准确率,使用可解释深度神经网络 (Ex-DNN) 模型获得平均 96% 的分类准确率。我们的研究结果基于静息状态下 ToM 区域功能连接模式的关键差异和异质性,以及对早期发育阶段轻度至重度非典型社会认知和沟通缺陷的预测,在 ASD 样本中确定了三个重要的亚组。
* 通讯作者:Tobias Heindel,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404X Lucas Rickert、Daniel A. Vajner、Martin von Helversen、Sven Rodt 和 Stephan Reitzenstein,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:lucas.rickert@tu-berlin.de(L. Rickert)。https://orcid.org/0000-0003-0329-5740(L. Rickert)。https://orcid.org/0000-0002-4900-0277(DA Vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838 (S. Reitzenstein) Kinga Żołnacz,弗罗茨瓦夫科技大学光学与光子学系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0002-1387-9371 刘汉清,李树伦,倪海桥,牛志川,中国科学院半导体研究所光电材料与器件重点实验室,北京 100083;中国科学院大学材料科学与光电工程中心,北京 100049,E-mail: zcniu@semi.ac.cn (Z. Niu)。 https://orcid.org/0009-0004-7092-2382(H.刘)。 https://orcid.org/0000-0002-9566-6635 (Z. Niu) Paweł Wyborski,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰;丹麦技术大学电气与光子工程系,2800,Kgs.,Lyngby,丹麦 Grzegorz Sęk 和 Anna Musiał,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0001-7645-8243(G. Sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)
*通讯作者:托比亚斯·海因德尔(Tobias Heindel),柏林技术大学固态物理研究所,Hardenbergstraße36,10623柏林,德国,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404x Lucas Rickert,Daniel A. Vajner,Martin von Helversen,Sven Rodt和Stephan Reitzenstein,固态物理学研究所lucas.rickert@tu-berlin.de(L。Rickert)。https://orcid.org/0000-0003-0329-5740(L.Rickert)。 https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0003-0329-5740(L.Rickert)。https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-4900-0277(D.A.vajner)。https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0009-0004-7092-2382(H。Liu)。https://orcid.org/0000-0001-7645-8243(G。sęk)。https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-9566-6635(Z.Niu)PawełWyborski,弗罗克瓦夫(Wroclaw)的实验物理学系,斯坦尼斯·威斯皮亚斯基(StanisławWyspiański)27,50-370-Poloclaw,poloclaw,poland,wroclaw Unive Science of Science of Science of Science of Science and Inive Science of Science and Inive Science of Science and Technology of Science of Science and Technoic丹麦技术大学电气和光子学工程系,2800,KGS,Lyngby,Denmark Grzegorzsęk和AnnaMusiał,AnnaMusiał,弗罗克瓦夫科学与技术大学实验物理系,StanisławWyspiański海岸,Poland,50-370 Wroclaw。
*通讯作者:托比亚斯·海因德尔(Tobias Heindel),柏林技术大学固态物理研究所,Hardenbergstraße36,10623柏林,德国,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404x Lucas Rickert,Daniel A. Vajner,Martin von Helversen,Sven Rodt和Stephan Reitzenstein,固态物理学研究所lucas.rickert@tu-berlin.de(L。Rickert)。https://orcid.org/0000-0003-0329-5740(L.Rickert)。 https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0003-0329-5740(L.Rickert)。https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-4900-0277(D.A.vajner)。https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0009-0004-7092-2382(H。Liu)。https://orcid.org/0000-0001-7645-8243(G。sęk)。https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-9566-6635(Z.Niu)PawełWyborski,弗罗克瓦夫(Wroclaw)的实验物理学系,斯坦尼斯·威斯皮亚斯基(StanisławWyspiański)27,50-370-Poloclaw,poloclaw,poland,wroclaw Unive Science of Science of Science of Science of Science and Inive Science of Science and Inive Science of Science and Technology of Science of Science and Technoic丹麦技术大学电气和光子学工程系,2800,KGS,Lyngby,Denmark Grzegorzsęk和AnnaMusiał,AnnaMusiał,弗罗克瓦夫科学与技术大学实验物理系,StanisławWyspiański海岸,Poland,50-370 Wroclaw。
2 – 一个人写出追求真理的文本,就会部署一支隐喻和人际关系大军。但文本拥有一个视界,在这个视界中,文本与保证从文本中挖掘真理的解释者的视界进行批判性融合。文本以理解为前提。因此,对军队的批判性解释(理想理解)使得真理得以揭示。批判性视界的融合反映了文本所表达的愿望对象,即激励人们达到神化的地位。因为作者的意图和愿望是神化的隐喻大军,所以它是全面的。在给定的评价和解释背景下,作者是先行解释的仲裁者,这种仲裁者会自动适应真理,因为作者在写作文本的那一刻就只瞄准真理。
医生的判断(5)。为了克服这一限制,Wildman-Tobriner等人进行的研究。深入研究了人工智能(AI)在优化美国放射学院(ACR)TI-RADS的潜力。他们强调,AI技术的整合可以提高特异性(6)。放射素学可以从传统图像中深入提取和量化肉眼无法察觉的微妙特征,从而为临床决策提供了更客观和更定量的基础(7)。这种创新不仅减少了人为因素的影响,而且还将甲状腺结节的诊断推向了更准确和更有效的轨道。放射线分析是一种基于计算机的基于计算机的图像分析技术,该技术广泛用于器官疾病的诊断,分级,分期和预后预测,例如甲状腺,乳房,胸部和肺,肝,肾脏,肾脏和妇科(8)。几项研究确定,结合放射素学方式可以进一步改善与临床和超声信息结合使用的基本诊断性能。Yoon等人建立的预测模型。(9)使用多元逻辑回归分析分析表明,接收器操作特征(ROC)曲线(AUC)的恶性甲状腺结节(AUC)由组合放射线与临床变量组合的模型明显高于仅临床变量物(0.839 vs. 0.839 vs. 0.583)的模型。Liang等。Liang等。(10)比较了四个Ti-Rads分数的放射线分数,发现放射线分数模型比使用任何Ti-Rads得分模型增加了更多的好处。
1 蓝脑项目,洛桑联邦理工学院 (EPFL),Campus Biotech,1202 日内瓦,瑞士。 2 马德里理工大学和卡哈尔研究所 (CSIC) 皮质卡哈尔电路实验室,Pozuelo de Alarc´on,马德里 28223,西班牙 3 洛桑联邦理工学院 (EPFL) 大脑思维研究所拓扑学和神经科学实验室,洛桑 1015,瑞士 4 阿姆斯特丹自由大学神经基因组学和认知研究中心综合神经生理学系,阿姆斯特丹 1081 HV,荷兰 5 洛桑联邦理工学院 (EPFL) 神经微电路实验室,洛桑 1015,瑞士 6 沃州大学医院中心神经外科临床神经科学系,洛桑,瑞士 7 精神病学系精神神经科学中心,瑞士洛桑洛桑大学医院中心 8 耶路撒冷希伯来大学神经生物学系和 Edmond 和 Lily Safra 脑科学中心,9190501 耶路撒冷,以色列
本文主张在评估现实生活中AI设计,开发和部署的社会影响时,需要将反歧视性视为独特的视角。该论点基于对挪威公共部门约200个组织的调查以及19次深入的访谈,并提出了将“歧视”翻译为跨学科和话语环境中社会相关概念的挑战。本文在我们的研究中提出了对歧视风险的六个话语回应,以预示着专注于歧视如何使人们能够应对其他概念(例如偏见和隐私)无法解决的独特挑战。通过将歧视与其他辅助问题(例如偏见和隐私)区分开来,我们提出了我们对在实际实践和情况下对AI设计,开发和部署的批判性理解的必要性,并敦促AI开发人员积极采用反歧视性镜头,而在其实践中不替代临床概念,例如bias exprivation efformenty of topersipers of诸如bias或其他偏见,或其他相同的概念。
抽象的目标诊断运动障碍可能具有挑战性,因为它们与其他神经退行性和基底神经节疾病的类似临床表现,例如特发性帕金森氏病(IPD),基本震颤(ET),血管帕金森氏症,帕斯科派帕金森氏症,多个系统萎缩(MSA)(MSA),以及渐进性超级努力(Palsranuclear Pals)。Technetium- 99m标记的Tropane衍生物(99mtc-Trododat-1)成像可以帮助诊断帕金森氏病在早期诊断帕金森氏病,以帮助早期开始治疗。当前的研究旨在评估99mtc-Trododat-1成像在区分IPD和Parkinson-Plus综合征(PPS)中的作用。材料和方法我们分析了38名患者,转交给了我们部门进行99mtc-TrodotaT成像。这些患者在我们研究所的运动障碍诊所中进行了彻底评估,并可以诊断出IPD,Hoehn和Yahr(H&Y)阶段I/ II(N¼28)或PPS(PSP [N¼06]和MSA [N¼04])。纹状体摄取比(SUR),并对数据进行了统计分析。结果IPD,PSP和MSA组的平均年龄分别为56.5 12.15、65.2 11.1和51.2 3.9岁。在定性评估中,与尾状核相比,所有患者在99MTC-Trodot成像上的纹状体摄取降低降低,甲虫摄取量的降低较大。在半定位评估中,平均总SUR为0.58 0.27、0.53 0.31和0.91 0.20,IPD,PSP和MSA组分别为0.20。PSP组的总SUR最低,其次是IPD,但MSA的SUR相对较高,尽管差异在统计学上并不重要。在IPD患者组中,25/28例患者(89.3%)经历了更大的