农业涉及广泛的人,直接或间接连接到田野。在粮食生产方面,确保质量和解决营养问题对于任何食品工厂或组织而言至关重要。在当今的相互联系的世界中,购买食物的消费者应该对所使用的生产方法和原材料有很好的信息。但是,传统的供应连锁店经常在可追溯性等问题上挣扎。区块链技术为这些挑战提供了有希望的解决方案。通过利用加密哈希技术,区块链中的每个区块都以保持安全和不可变的方式加密信息。这种分散的方法可确保没有任何一个实体可以操纵数据,从而提供沿供应链的交易的防篡改记录。将区块链整合到食品可追溯性系统中可以彻底改变我们跟踪从农场到餐桌的食物之旅的方式。例如,在有机食品的情况下,消费者对质量和起源的期望很高,区块链可以提供透明度,安全性和可靠性。通过使消费者能够访问有关生产过程的详细信息,区块链使他们能够做出明智的选择并建立对有机食品供应链的信任。
星期二2:00 pm - 3:00 pm(亲自)会议时间:星期一和星期三3:00 pm - 4:25 PM地点:MLAC 213课程描述和目标:区块链技术给法律专业人士带来了新的挑战和机会。它挑战他们发现并回答前所未有的法律和监管问题。它还提供了新的机会,因为区块链行业蓬勃发展。律师事务所和咨询公司开设区块链实践,监管机构急需法律专业知识来支持区块链创新,同时平衡对消费者保护的需求,而执法部门还需要法律专业知识来处理由滥用区块链技术引起的非法活动。本课程是区块链技术以及相关法律和法规问题的介绍。学生将(1)学习区块链及其社会和哲学意义的核心技术; (2)分析现实世界中的区块链应用,例如加密货币,初始硬币产品,stablecoins和不可杀死的令牌; (3)研究区块链及其应用所提出的法律和监管问题,重点是证券法规,商品监管,反洗钱法律和公司法; (4)针对这些问题提出解决方案,并评估其利弊。本课程将以行业,政府和学术界的来宾演讲为特色,使学生能够与区块链企业家,监管机构和计算机科学家互动。尽管不需要以前的技术经验,但该尖端课程要求学生有好奇心和适应能力来对待主题。学生的学习成果在本课程结束时,学生应该能够:
EPCI的优点是它旨在用来表示供应链中的可见性数据,并且非常适合通过其关键跟踪事件(CTES)进行住房可追溯性数据。许多供应链合作伙伴,尤其是处理器,分销商和零售商都使用了包括EPCIS在内的识别标准和数据共享标准。该文件是通过收集历史可追溯性数据,转换为EPCI的,以及与零售合作伙伴及其各自解决方案提供商进行测试的。
安全是WSN必不可少的关注部分。在真实的现状时代,可靠的机制和路由方案正面临着不同的相遇,而且也很棘手。问题在识别不信任的节点和从源到目的地遵循的路线以及WSN中电池状态的约束时发现了问题。没有有效的技术来避免辩护性节点攻击。当前的研究文章通过采用区块链技术就可以解决其他持久缺点,例如使用区块链的安全AODV来解决其他持续的缺点。通过执行现有系统的仿真和实验验证,本研究文章的结果表示成功识别和发生恶意节点,端到端延迟,数据包输送比率以及通过PUT性能评估。还使用NS2区块链算法模拟了区块链数据库中节点的注册和AODV协议中黑洞攻击的行为。
MCA系,K。L. S. Gogteinstute of Technology,Belagavi,隶属于Tovisvesvaraya Technology University,Belagavi,Karnataka,India摘要:数字取证需要系统地应用科学方法来保存,收集,验证,验证,验证,验证,识别,分析,分析,分析,分析,解释,解释,文档,文档,和现在的数字证据。有效地管理数字证据,对于将个人与犯罪活动联系起来至关重要,面临着诸如从初始调查人员转移到司法当局的重大挑战,例如篡改风险和文件错误。传统的监护链(COC)方法(通常涉及纸张或电子形式),由于其易受篡改和不一致的侵害,不足以应对这些挑战。本文提出了一个基于区块链的监护链(B-COC)框架,以提高数字证据管理的安全性,透明度和完整性。利用区块链技术的固有特性,例如不变性,分布式分类帐和共识机制,B-COC框架为维持数字取证中的COC提供了强大的解决方案。该体系结构是在利用以太坊的私人许可区块链和权威证明(POA)共识机制的基础上建造的,从而将参与限制为授权节点。智能合约可自动化关键操作,包括创建证据,所有权转移和信息检索,增强数字证据的安全性和可追溯性。该系统可随意地记录所有交互,提供了一条清晰,防篡改的监护链。B-COC框架的关键好处包括提高安全性,透明度和数字证据管理的问责制,可能降低成本并提高效率。总而言之,B-COC框架代表了管理数字证据,确保其完整性和可靠性的重大进步,从而增强了对法律程序和法医调查的信任。索引 - 数字取证,监护链(COC),区块链,基于区块链的托管链(B -COC),证据管理,以太坊,私人区块链,智能合约,权威证明。
摘要区块链在安全和效率方面,在改善太空空间整体网络(Sagins)方面带来了巨大的潜力。在区块链集成的萨金斯中,许多应用程序和服务固有地要求通信的包含和通信行为必须与窃听者相抵触,在这种情况下,秘密通信算法始终被部署为基本通信组件。但是,现有的秘密通信方案与关键问题有关。一方面,他们需要一个发件人长时间在本地维护加密密钥,这是非常昂贵的,并且有效地续订,这意味着更新秘密钥匙。另一方面,秘密发送的数据的密文将明确出现在网络中,因此该方案很容易受到秘密密钥漏洞的影响。在本文中,我们提出了一个安全且有效的秘密通信方案,用于区块链集成的Sagins,称为CC-BSAGINS,以使发件人免于维护秘密密钥。关键技术是以安全且有效的方式将秘密发送的数据映射到基础区块链上的某些交易;映射信息通过秘密通信算法发送。这样的两步机制可从密钥管理中释放发件人,并且不需要传达密文。我们提供正式的安全证明并进行全面的绩效评估,以证明CC-BSAGINS的安全性和效率。
摘要本研究集成了零信任体系结构(ZTA)和区块链,以增强云计算安全性。在数字时代,云计算已成为全球存储和处理数据的主要技术。然而,事实证明,一种基于传统的外线安全模型在应对现代威胁方面无效,例如内部威胁,高达60%,勒索软件攻击2022年的大型计算云提供商,导致多达数十亿美元的美元,增强了现有安全模型的弱点。零信任体系结构(ZTA)提供具有颗粒状访问和身份验证控制方法的解决方案,但其应用仍然面临着效率和可伸缩性的挑战,区块链,通过分散技术和难忘的记录,提高透明度和数据完整性,但它们的使用通常受到能源消耗和高潜水的限制。本研究旨在探索ZTA和区块链之间,作为提高云安全性的创新解决方案。通过结合基于ZTA的访问控制和区块链透明度,本研究为内部和外部威胁开发了弹性的安全模型。仿真表明,ZTA和区块链的完整性可以将内部人员的威胁降低35%,并将数据审核效率提高20%。这种方法不仅提供了更强大的保护,而且还提供了一个迅速增长的云基础设施的自适应和透明系统。
量子叠加是量子物理学的一个基本原理,描述了量子系统(如粒子)在被测量或观察之前同时存在于多种状态的能力。最著名的例子是“薛定谔的猫”,在打开盒子之前,猫既活着又死了。
https://blog.cloudflare.com/lavarand-in-product-the-nitty-gritty-technical-details