巴黎,阿拉米斯项目团队,F-75013,法国巴黎,法国B. Institut du Cerveau et de la Moelle Epini ere, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universit e, Ecole Normale Sup erieure, ENS, Centre MEG-EEG, F-75013, Paris, France e Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104,宾夕法尼亚州宾夕法尼亚大学佩雷曼医学院,美国弗莱尔曼大学神经病学系,19104年,美国G物理与天文学系,艺术与科学学院,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,19104年,美国电气和系统工程学系,宾夕法尼亚州宾夕法尼亚州,宾夕法尼亚州pr。 19104年,美国I精神病学系,宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院,宾夕法尼亚州费城,19104年,美国J Santa Fe Institute,NM,NM,87501,美国,
Figure 8.The working mechanism and sensing performance of the Wood-based Triboelectric Self-powered Sensors (WTSS).(a) Schematic illustration of the working principle of WTSS; (b) Volatile Organic Compounds (VOCs) of WTSS under varying pressures; (c) VOCs of WTSS at different stress levels; (d) Increasing VOCs of WTSS with escalating pressure.Inset: An enlarged view of the low-pressure region; (e) VOCs of WTSS and input pressure at frequencies of 0.5, 1, and 2 Hz [41] 图 8.木质基摩擦电自驱动传感器 (WTSS) 的工作机理和传感性能, (a) WTSS 工作原理示意图; (b) WTSS 在不同压力 下的挥发性有机化合物 (VOCs) ; (c) WTSS 在不同应力水平下的挥发性有机化合物 (VOCs) ; (d) 随着压力增加, WTSS 的挥发性有机化合物 (VOCs) 逐渐增加。插图:低压区域的放大视图; (e) 在 0.5 、 1 和 2Hz 的频率下, WTSS 的挥发性 有机化合物 (VOCs) 与输入压力的关系 [41]
全文标题:芬太尼外围暴露于奖励和感官大脑区域的转录组合分析jimmy olusakin 1,2,Gautam Kumar 1,2,Mahashweta Basu 3,Cali A. Calarco A. Calarco A. Calarco 1,2,Megan E. Fox 4,Jason B. Alipio Alipio Alipio 1,2,Cathe kela kel kel kell kela kathe turna D.2.2. 1,2,5,Seth A. Ament 2,3,5,Mary Kay Lobo 1,2,5 1解剖学和神经生物学系,马里兰大学医学院,马里兰州巴尔的摩大学医学院。2在马里兰州巴尔的摩的马里兰州医学院神经科学的计划。 3马里兰州马里兰州医学院的基因组科学研究所,马里兰州巴尔的摩。 4宾夕法尼亚州宾夕法尼亚州医学院麻醉学系。 5马里兰州马里兰州医学院精神病学系,马里兰州巴尔的摩。 通讯作者:马里兰大学医学院神经生物学教授玛丽·凯·洛博(Mary Kay Lobo)博士。 mklobo@som.umaryland.edu短标题:围产期芬太尼小鼠的脑转录组。 关键字:芬太尼,围产期,成绩单,性别差异,奖励,感觉。2在马里兰州巴尔的摩的马里兰州医学院神经科学的计划。3马里兰州马里兰州医学院的基因组科学研究所,马里兰州巴尔的摩。 4宾夕法尼亚州宾夕法尼亚州医学院麻醉学系。 5马里兰州马里兰州医学院精神病学系,马里兰州巴尔的摩。 通讯作者:马里兰大学医学院神经生物学教授玛丽·凯·洛博(Mary Kay Lobo)博士。 mklobo@som.umaryland.edu短标题:围产期芬太尼小鼠的脑转录组。 关键字:芬太尼,围产期,成绩单,性别差异,奖励,感觉。3马里兰州马里兰州医学院的基因组科学研究所,马里兰州巴尔的摩。4宾夕法尼亚州宾夕法尼亚州医学院麻醉学系。5马里兰州马里兰州医学院精神病学系,马里兰州巴尔的摩。 通讯作者:马里兰大学医学院神经生物学教授玛丽·凯·洛博(Mary Kay Lobo)博士。 mklobo@som.umaryland.edu短标题:围产期芬太尼小鼠的脑转录组。 关键字:芬太尼,围产期,成绩单,性别差异,奖励,感觉。5马里兰州马里兰州医学院精神病学系,马里兰州巴尔的摩。通讯作者:马里兰大学医学院神经生物学教授玛丽·凯·洛博(Mary Kay Lobo)博士。mklobo@som.umaryland.edu短标题:围产期芬太尼小鼠的脑转录组。关键字:芬太尼,围产期,成绩单,性别差异,奖励,感觉。
摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
抽象的睡眠睡眠对于保持健康的身体和心灵至关重要,因为我们的身体细胞在睡眠期间修复自身。但是,各种因素会干扰我们的睡眠,而地质应力被认为是促成原因之一。地质应力是指自然能量流动的干扰,这主要是由地质水静脉,矿物沉积物和断层线等地质特征引起的,这可能导致健康破坏。因此,我们旨在研究地质应激对睡眠质量的影响以及Enviromat作为潜在解决方案的功效。在这项研究中,根据包含和排除标准,总共筛选了22名受试者和招募。研究始于对相关研究的文献综述,以确定地质压力对睡眠质量的影响。在审查了相关研究后,在新德里全印度医学科学研究所成立了一项方案并提交给机构伦理批准委员会。一旦协议获得批准,就在睡眠实验室中鉴定出地形应力区,那里的受试者在这些区域的床上睡觉。随后,评估了环境的功效,以减轻地形应激对睡眠质量的有害影响。记录了20个受试者的完整数据,并在两次读数之间进行10天的差距进行了和分析。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2023年12月20日发布。 https://doi.org/10.1101/2023.12.20.572550 doi:Biorxiv Preprint
抽象断层区域展示了3D可变厚度,该特征仍然不足,特别是在对流体流动的影响方面。分析分析溶液后,我们通过基准实验检查了3D热氢(Th)动力学模型,该实验结合了一个断层区,其厚度变化对应于逼真的数量级。这些发现强调了一个关注区域,其中剧烈对流驱动流体流动,导致在断层区最厚的部分的浅深度下,温度升高到150°C。此外,通过考虑3D热氢化机械(THM)模型中的各种构造制度(压缩,延伸和滑行)模型,并将其与基准测试实验进行比较,我们观察到在感兴趣的面积内作用于流体流动的流体压力引起的流体压力变化。这些构造引起的压力变化会影响区域的热分布和温度异常的强度。这项研究的结果强调了孔弹性驱动力对转移过程的影响,并强调了将断层几何形状作为关键参数的重要性,这是对破裂系统中流体流量的未来研究。此类研究在地热能,CO 2存储和矿藏中具有相关的应用。
1物理学系,区域大气建模小组,国际卓越校园校园校园校园校园校园校园校园校园母马Nostrum,默西亚大学,西班牙默西亚大学,2个荒漠化研究中心(CIDE,CSIC,GVA),西班牙国家研究委员会,瓦伦西亚,西班牙,西班牙,3个应用数学系和计算机科学科学Cantabria大学气象和计算,与CSIC,Santander,西班牙,4 pyrenean生态研究所(IPE -CSIC)相关的单位加泰罗尼亚大学,巴塞罗那,西班牙,地质,地理与环境系7,阿尔卡拉大学,环境遥感研究小组,西班牙阿尔卡拉·德·亨纳雷斯,8地球科学与地球资源研究所,国家研究委员会,国家研究委员会,皮萨,意大利,意大利,9,CIêdomluiz学院9 (IDL),里斯本大学,里斯本,葡萄牙
1物理学系,区域大气建模小组,国际卓越校园校园校园校园校园校园校园校园校园母马Nostrum,默西亚大学,西班牙默西亚大学,2个荒漠化研究中心(CIDE,CSIC,GVA),西班牙国家研究委员会,瓦伦西亚,西班牙,西班牙,3个应用数学系和计算机科学科学Cantabria大学气象和计算,与CSIC,Santander,西班牙,4 pyrenean生态研究所(IPE -CSIC)相关的单位加泰罗尼亚大学,巴塞罗那,西班牙,地质,地理与环境系7,阿尔卡拉大学,环境遥感研究小组,西班牙阿尔卡拉·德·亨纳雷斯,8地球科学与地球资源研究所,国家研究委员会,国家研究委员会,皮萨,意大利,意大利,9,CIêdomluiz学院9 (IDL),里斯本大学,里斯本,葡萄牙
摘要:选择性激光熔化(SLM)是一种金属粉末融合添加剂制造工艺,具有为航空航天和生物医学植入物制造复杂组件的潜力。大规模适应受到阻碍。非均匀熔体池尺寸是这些缺陷的主要原因。由于先前的粉末床轨道加热而导致的熔体池尺寸变化。在这项工作中,对相邻轨道产生的热量的效果进行了建模,并设计了反馈控制。控制的目的是调节熔体池横截面区域,以拒绝粉末床内相邻轨道的热量的影响。SLM过程的热模型是使用集总池体积的能量平衡开发的。将来自相邻轨道的干扰热建模为熔体池的初始温度。将热模型与干扰模型结合起来,导致了一个非线性模型,描述了熔体池的演化。PID是一种经典的反馈控制方法,用于最大程度地减少轨道干扰对熔体池面积的影响。在已知的环境中为所需的熔体池区域调整了控制器。仿真结果表明,在扫描16毫秒内的粉末层多个轨道的扫描过程中,所提出的控制器调节所需的熔体池面积,并在0.04 mm的长度内将激光功率降低了10%,大约在五个轨道中。这减少了孔形成的机会。因此,它提高了使用SLM工艺制造的组件的质量,从而减少了缺陷。