作为伦敦皇家学会会员,德鲁克的发现得到了众多科学和医学协会的认可。他曾荣获《时代》杂志 2024 年 100 位最具影响力人物之一、2023 年沃尔夫医学奖、内分泌学会 2020 年约翰·D·巴克斯特企业家奖、2009 年临床研究员奖和 1993 年理查德·E·魏茨曼纪念奖;美国糖尿病协会的班廷奖;欧洲糖尿病研究基金会颁发的克劳德·伯纳德奖;铃木万平国际奖;卡罗琳斯卡医学院颁发的罗尔夫·卢夫特奖;以及哈灵顿医学创新奖。他也是同行评议期刊《内分泌评论》的前主编。
在帮助研发 COVID-19 疫苗并与他人共同获得诺贝尔医学奖之前,卡塔琳·卡里科 (Katalin Karikó) 的故事对许多女性来说都很熟悉:她面临资金匮乏、认可不足、被降职,最终被大学开除 1 。尽管卡里科成功克服了这些巨大的障碍,但更多的女性因普遍存在的性别歧视和骚扰而选择离开学术界。一项针对 25 万美国学者的大规模研究为这种基于性别的人员流失提供了越来越多的证据 2 。作为现任和前任机构负责人和研究领导者,我们认为,这种离职以及相关女性人才的流失会造成巨大的科学和经济损失,并概述了提高学术部门效率的改革措施。
自身免疫性疾病是由各种因素引起的病理自身免疫反应,这可能导致组织损伤和器官功能障碍。它们可以分为器官特异性和系统性自身免疫性疾病。这些疾病通常涉及各种身体系统,包括血液,肌肉,骨骼,关节和软组织。瞬态回收潜力(TRP)和压电受体,导致David Julius和Ardem Patapoutian在2021年赢得了诺贝尔的生理学或医学奖,引起了人们的注意。关于自身免疫性疾病中TRP和压电受体的大多数研究已经在动物模型上进行,只进行了很少的临床研究。因此,本研究旨在审查有关TRP和压电的现有研究,以了解这些受体在自身免疫性疾病中的作用,这可能有助于阐明新型治疗策略。
检查点调制已作为大小的关键IO子扇区出现。这些是试图停止或缓和癌症对人体免疫系统不同途径的抑制(我们将稍后再详细描述此关键类别)。没有这些障碍,人体的自然作用可能能够扭转癌症的发展。检查点调节剂(或抑制剂)已成为一些未化学疗法的药物,这些药物多年来一直没有取得重大进展。6他们的引入导致了现代肿瘤学的范式转变,2018年诺贝尔生理学或医学奖授予Tasuku Honjo和James Allison“因抑制阴性免疫调节发现癌症治疗的奖项,获得了认可”。这些药物的7个关键专利到期将发生在2020年代下半年,可能导致从品牌代理转变为生物仿制药和新型机制(以将销售扩展到专利悬崖上)。
历史记录:磁共振成像(MRI)源自Felix Bloch和Edward Purcell于1946年发现的核磁共振(NMR),他们于1952年获得诺贝尔物理学奖。最初应用于化学,NMR的医疗潜力是由Raymond Damadian实现的。1973年,保罗·劳特伯(Paul Lauterbur)推出了针对NMR的空间编码,使创建2D图像成为可能,彼得·曼斯菲尔德(Peter Mansfield)随后开发了快速成像技术。第一次人类MRI扫描于1977年进行,MRI在整个1980年代及其他地区迅速成为医学诊断的主食,提供详细的图像而无需电离辐射。劳特伯(Lauterbur)和曼斯菲尔德(Mansfield)于2003年因其对MRI开发的贡献而获得诺贝尔生理学或医学奖。
伊维菌素是一种带有16元环的大花环抗寄生虫药物,可广泛用于治疗许多寄生虫病,例如河流盲,象象和sc虫。satoshi'Omura和William C. Campbell赢得了2015年诺贝尔生理学或医学奖,因为它发现了伊维菌素对寄生疾病的出色效力。最近,据报道,伊维菌素通过调节多种信号通路来抑制几个肿瘤细胞的增殖。这表明伊维菌素可能是具有巨大潜力的抗癌药物。在这里,我们审查了伊维菌素抑制不同癌症的发展并促进程序性细胞死亡的相关机制,并讨论了伊维菌素作为肿瘤治疗的抗癌药物的临床应用的前景。
,担任俄亥俄州立大学哥伦布分校工业、焊接和系统工程系本田交通教授。他还是生物动力学实验室主任,并在物理医学和生物医学工程系任职。Marras 教授还是俄亥俄州立大学人体工程学研究所的联席主任。Marras 博士在密歇根州底特律的韦恩州立大学获得生物工程和人体工程学博士学位。他的研究主要围绕生物力学流行病学研究、实验室生物力学研究、数学建模以及背部和手腕的临床研究。他的研究成果已发表在 100 多篇同行评审期刊文章和 12 本书的章节中。他还拥有两项专利,其中一项是腰椎运动监测器 (LMM)。他的工作也得到了国内和国际的认可。他曾获得著名的瑞典沃尔沃腰痛研究奖和奥地利维也纳物理医学奖。
2024年10月7日,卡罗林斯卡研究所的诺贝尔议会授予了今年的诺贝尔·安布罗斯(Victor Ambrose)和加里·鲁夫库(Gary Ruvkun)的诺贝尔生理学或医学奖,“因为MicroRNA的疾病及其在转录后基因调节中的作用及其作用”(https://wwwwwwwwwwwww..nobelprize.ornice.rine/mide sime ofence oferne oferne of to MicroRNA/)。这项获奖研究发表在1993年的Back-back Compers中,在细胞中证明了Lin-4 microRNA在从较大的第二阶段通过base-pair for Attart MRNA降低了lin-14 mRNA在细胞质量中的LIN-14 mRNA的翻译和降解。当Ruvkun及其同事后来确定并描述了更加保守的Let-7 microRNA,在从小幼虫晚期到成人阶段的转录后调节作用在从软体动物到垂直阶段的动物的过渡期间起着类似的调节作用(但在植物,酵母,酵母,豆科群岛或犬科动物的发展中都没有多细胞生物的机械[1]。
系统,被认为是脑信息传播,传播和处理的主要要素。2在一生中,人的大脑不断变化,因此变成了灵感和适应性的器官。这种神经可塑性,成年大脑对响应外部和内部刺激的响应改变其解剖结构,连通性和网络的能力,使神经元可以在结构上重组和形成新细胞,并调整其数量,形态和响应环境变化的功能。3 - 6在已经存在的神经网络中这些新神经元(神经发生)的形成是神经可塑性3 - 6的最重要例子之一,也是一个非常有趣的过程。在19世纪末和20世纪初,西班牙的医师和组织学家拉蒙·卡贾尔(诺贝尔奖,1906年诺贝尔生理学和医学奖)确定了中枢神经系统(CNS)的微观肛门(CNS),并假定:所有细胞都必须死亡,并且不会发生再生。也许将来科学会改变这一法律。” 6实际上,科学已经成功地关联了这一范式。在20世纪的前半叶,一些研究人员怀疑出生后大鼠大脑中的细胞分裂过程,7 - 9
我一直喜欢写关于科学活动脱颖而出的人,我很幸运见面。 div>我在他的一天中与诺贝尔医学奖的罗伯特·富斯乔特(Robert Furschott)和埃尔文·尼赫(Erwin Neher)一起,与TeófiloHernando和Otto Krayer或Sada Kirpekar和Carlos Belmonte一起做了。 div>现在,我想建立一个与纪念性课程“TeófiloHernando”有关的经验的故事,我们每年在春季在马德里大学自主大学医学学院宏伟的大会大厅中庆祝。 div>这是来自阿利坎特大学(University of Alicante)的杰出科学家弗朗西斯科·马丁内斯·莫吉卡(FranciscoMartínezMojica),他教授了本系列的第27堂课,这让人想起了现代西班牙药理学的进步TeófiloHernando的形象。 div>他的演讲的暗示性头衔打开了有前途的观点:“ CRISPR的限制:谁将大门戴上CAS?” div>