*REQUIRED description of contraindication: _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
摘要:本研究彻底回顾了人工智能(AI)在医疗保健中的应用状态,有关不同疾病类型的AI使用趋势,这些疾病类型和问题妨碍了他们的进一步进展。该研究通过通过PubMed数据库找到有关医疗保健中AI的相关当前文章,使用了文献综述和数据分析。这项工作分析了AI在癌症,心血管疾病和神经系统疾病以及医疗保健现实部署中的瓶颈中的使用。研究结果表明,尽管AI证明了提高诊断精度的潜力,但与数据隐私,道德考虑和模型解释性有关的几个障碍仍然存在。总而言之,本综述对医疗保健中AI应用的当前状态进行了评估,并确定了需要进一步调查的关键领域。通过解决这些挑战,可以更有效地开发和广泛地实施未来的创新,最终有助于AI驱动的医疗保健解决方案的进步和优化。
问题是什么?This issue is specific to and limited to the use of the Cardiac DICOM SR feature: When a user uses and configures the Cardiac DICOM SR feature to display either the MINIMUM (Min) or the MAXIMUM (Max) measured value, AND Makes multiple measurements of the cardiac region during an examination, AND Exports the results into the Cardiac DICOM SR feature, THEN The Cardiac DICOM SR viewer will NOT display the MINIMUM (Min)或最大值(最大)值,而将显示最后的测量值。在这种情况下,心脏DICOM SR查看器中显示的测量值可能不是检查期间测量的最小(min)或最大值(最大)值。
应在规范和数据表中给出单元格的标称电压。这可能是使用前的近似开路电压,尤其是对于原代细胞。开路电压是没有外部负载的电压。应使用高输入阻抗(最低1MΩ)电压计进行开路电压测量值。或者,可以引用次级电池的标称电池电压为排放范围的最大和最小电压之间的平均开路电压。应指定电压测量条件(尤其是温度)。可以在相关标准标准中找到标准细胞的标称细胞电压(例如,非水性原代细胞的IEC 60086-1)。电池和电池供应商可以提供此信息的单元或电池数据表。
摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。
所有计划信函 24-002 取代所有计划信函 09-009 致:所有 MEDI-CAL 管理式医疗计划 主题:印第安医疗保健提供者和美国印第安成员的 MEDI-CAL 管理式医疗计划责任 目的:本所有计划信函 (APL) 旨在总结和阐明现有联邦和州对参加 Medi-Cal 管理式医疗计划 (MCP) 的美国印第安成员的保护以及替代医疗保险选项。此外,本 APL 整合了与保护印第安医疗保健提供者 (IHCP) 相关的各种 MCP 要求,包括与与 IHCP 签订合同以及及时迅速地报销 IHCP 索赔相关的要求。1 本 APL 还提供了有关 MCP 部落联络员要求和期望的指导,涉及他们的角色和职责。背景:本 APL 中包含的卫生保健服务部 (DHCS) 有关美国印第安人和 IHCP 的政策受到联邦和州法律、联邦医疗保险和医疗补助服务中心 (CMS) 的官方指导以及 MCP 合同的支持。定义联邦法律将满足以下任何条件的个人定义为“印第安人”:
以技术进步和对个性化医疗保健解决方案的需求不断增长的驱动,以患者为中心的医疗保健应用程序市场正在迅速发展。市场是根据应用程序类型进行了细分的,包括药物管理应用程序,远程医疗应用程序,健康监测应用程序以及健康与健身应用程序,每个应用都满足了多样化的患者需求。针对特定的患者群体,这些应用程序支持慢性疾病管理,急性护理,预防性护理,心理健康和小儿护理,改善患者参与度和结果。兼容性在仅iOS,仅Android,跨平台和基于Web的应用程序上有所不同,从而确保跨设备可访问性。此外,无缝数据集成起着至关重要的作用,具有EHR集成,可穿戴设备连接,社交媒体集成和患者报告的结果(PRO)跟踪增强互操作性
