图3。28/20/52 mol%PEGDA/PEGMEA/PFPA随机共聚物网络的FTIR-ATR。 从底部到顶部:黑色痕迹是在取代之前,红色迹线是在与三乙胺水作为对照中反应后,绿色迹线在THF中与1-(3-氨基氨基丙基)咪唑反应后,蓝色迹线在THF中与十二烷胺反应后。 请注意,PFPA的消失在1780、1520和985 cm -1延伸,酰胺的形成在1660 cm -1左右。 在十二烷基取代的产品中〜2925 cm -1处的信号与C-H拉伸相对应,在咪唑取代的产物中,信号与665和623 cm -1的信号对应于咪唑环弯曲。 35-3628/20/52 mol%PEGDA/PEGMEA/PFPA随机共聚物网络的FTIR-ATR。从底部到顶部:黑色痕迹是在取代之前,红色迹线是在与三乙胺水作为对照中反应后,绿色迹线在THF中与1-(3-氨基氨基丙基)咪唑反应后,蓝色迹线在THF中与十二烷胺反应后。请注意,PFPA的消失在1780、1520和985 cm -1延伸,酰胺的形成在1660 cm -1左右。在十二烷基取代的产品中〜2925 cm -1处的信号与C-H拉伸相对应,在咪唑取代的产物中,信号与665和623 cm -1的信号对应于咪唑环弯曲。35-36
后印本:Kulpa-Koterwa A.、Ryl J.、Górnicka K.、Niedziałkowski P.,基于外链中含有 1,4,7,10-四氮杂环十二烷的磁性氧化铁的新型纳米吸附剂(Fe 3 O 4 @SiO 2 -cyclen)用于吸附和去除选定的重金属离子 Cd 2+ 、Pb 2+ 、Cu 2+ ,Journal of Molecular Liquids,第 368 卷,B 部分(2022 年),120710,DOI:10.1016/j.molliq.2022.120710 © 2022。此手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 https://creativecommons.org/licenses/by-nc-nd/4.0/
该研究研究了使用结构表征(气相色谱质量谱图,GC-MS,GC-MS和傅立叶转化基础型,FTIR,FTIR)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir),分别研究了1.0 m HCl和0.5 m H 2 SO诱导的低碳钢上的抗腐烂潜力(ZO)。电位动力学极化,PDP)技术和理论模拟。进行了结构表征,以鉴定植物提取物中存在的化学成分和官能团,而电化学技术和理论计算则用于检查提取物的抗腐蚀潜力并确定实验结果。GC-MS的结果表明,提取物中存在二十三(23)个化合物,其中三个(1-(1,5-二甲基-4-己基)-4-甲基 - 十二烷酸,十二烷酸和9-二十二苯卡烯酸(Z)-2- hydroxy-1-(hydroxy-1-(hydroxy-etraculation for for in Concution)在ZO提取物中存在以下官能团(O – H,C = C,C = O,C – C和C – H)。EIS的结果表明,ZO提取物在1 M HCl中的低碳钢和0.5 m H 2中的低碳钢和93.6%的腐蚀抑制作用分别在1000 mg / l的最大抑制剂浓度下分别为1000 mg / l。另外,PDP的结果表明,ZO提取物作为混合抑制剂起作用,因为阳极反应过程都改变了。量子化学计算结果表明,与其他两种化合物相比,9-八度二苯甲酸(Z)-2-羟基-1-(羟甲基)乙基酯具有良好的能隙(∆ E),表明其在硫酸环境中与金属表面更好地与金属表面相互作用。通过分子动力学模拟,在H 2 So 4环境中,在H 2 SO 4环境中,其良好的吸附能量为-355.55 kcal / mol在H 2 So 4 So环境中与-167.81kcal / mol相比。
结果:将三个分离株鉴定为属于两个家族的革兰氏阴性细菌:肠杆菌科(肠杆菌sp。和肠杆菌)和alcaligenaceae(Alcaligens aquatilis)。an。gambiae在A. Aquatilis培养物中产卵的卵比在肠杆菌属的卵中多3倍。依次。在莫里的培养物中产卵的卵比A. aquatilis多4倍。总体而言,在属于化学类别的苯甲酸盐,吡啶,醛,甲醛,甲基苯,酒精,烷烃和吲哚的分离株的顶空中鉴定了16个VOC。随机森林分析确定了10种化合物,最大程度地吸引了细菌分离株对产卵的气味。特别是,肠杆菌SP的气味比其他两个物种发出的十二烷和吲哚的发射量更高。近距离分析表明,分离物在妊娠蚊子上的不同吸引力与它们的挥发性释放相关。
摘要:在这项研究中,我们开发了一种热存储介质,其中包括充满有机相位变化材料(PCM)的多孔活性炭,该碳利用相变的潜热在冷却过程中吸收热量和释放热量。对于活化的碳,我们同时使用了基于木炭的粉状活性炭(250-350均)和颗粒状活性炭。实验中使用的有机相变材料是十二烷,三烷,四烷和五烷。材料特性,例如导热率,潜热和熔融温度范围,结果观察到结果是一致的。还评估了所提出的培养基的周期性热性能。值得注意的是,用有机PCM的混合物填充活化的碳导致最高的温度调节作用。这项研究中提出的程序和结果有望进一步改善含有稳定温度的PCM的热储存介质的性能,包括建立加热和冷却。
混合能源系统包括可再生能源(主要是风能和太阳能)和储存系统,越来越欢迎为小型社区或小岛(例如小岛)提供服务。尤其是本研究涉及位于希腊十二烷的小岛的混合动力站,其中包括800 kW的风力涡轮机,160kWP PV场和2.88 MWH Nanicl 2电池;该系统还通过海底电缆连接到KOS-KALYMNOS电网。目前,它用于在希腊公司Eunice Energy Group的管理下出口其整个能源生产。与网格调节器的协议涉及三个功率水平(0 kW,200 kW,400 kW)的能源输出的报酬,前一天提供了每小时的调度。经济惩罚将在不久的将来因未能尊重权力水平而予以适用,无论是以过剩或不足的形式。必须根据可用的能力来避免盈余或缺陷,并过多地减少可再生能源。在这项工作中,提出了一种优化岛上能源通量的方法,以更好地利用潜在的收入,而不会过度撤消削减。优化是通过“ Gurobi”优化求解器在Python环境中进行的,该求解器基于混合整数线性编程(MILP)。根据滚动范围的方法出现了调度。新的调度方法表明,出口能源有可能增加87.1%,并有可能使当前运营的收入增加一倍。此外,提出了新的方案,以探索与网格操作员的不同协议如何转移最佳解决方案。引入了关闭风力涡轮机的可能性可能会增加年收入10%,而引入较高功率频段的情况有可能将年收入增加29.1%。
ADA 抗药物抗体 ADME 吸收、分布、代谢、消除 AE 不良事件 ALT 丙氨酸氨基转移酶 API 活性药物成分 AST 天冬氨酸氨基转移酶 ATC 解剖治疗 化学分类系统 AUC 血浆浓度-时间曲线下面积 AUC 0-24h 24 小时给药间隔内血浆浓度-时间曲线下面积 BLQ 低于定量限 BW 体重 CI 置信区间 CL 清除率 CM 造影剂 C max 观察到的药物血浆/血清最高浓度 CNR 对比噪声比 CNS 中枢神经系统 CT 计算机断层扫描 CYP 细胞色素 P450 DDI 药物相互作用 DOTA Tetraxetan(十二烷四乙酸) ECG 心电图 eGFR 估计肾小球滤过率 EMA 欧洲药品管理局 ERA 环境风险评估 FAS 完整分析集 FDA 美国食品药品管理局 GBCAs 钆基造影剂Gd 钆 GI 胃肠道 GLP 良好实验室规范 hERG 人类 ether-a-go-go 相关基因 HPLC 高效液相色谱法 IA 动脉内 IC/EC 50 半数最大抑制/有效浓度 ICH 国际协调委员会 Ig 免疫球蛋白 IMP 研究药物 INN 国际非专有名称 ITT 意向治疗 IV 静脉 LoQ 问题清单 MAH 营销授权持有人 Max 最大值 MDRD 肾脏疾病的饮食调整 Min 最小值 MRHD 最大推荐人体剂量 MRI 磁共振成像 N/A 不适用 NO(A)EL 未观察到(不良)影响水平 NSF 肾源性系统性纤维化 NYHA 纽约心脏协会
花生 ( Arachis hypogaea L.) 是全球主要油料作物,广泛种植于热带和亚热带地区。由于花生含油量高 (约 46% – 58%) 和蛋白质含量高 (约 22% – 32%),在解决营养不良和确保许多地区的粮食安全方面发挥着关键作用。由于对人类健康的潜在影响,植物油和食品的脂肪酸谱最近引起了越来越多的关注。极长链脂肪酸 (VLCFA) 被定义为碳链长度超过 18 个原子的脂肪酸 (Guyomarc'h et al ., 2021 )。花生仁含有各种 VLCFA,例如花生酸 (C20:0)、二十碳烯酸 (C20:1)、二十二烷酸 (C22:0) 和二十四碳烯酸 (C24:0),但大多数是饱和脂肪酸 (SFA)。众所周知,高水平的极长链饱和脂肪酸 (VLCSFA) 与动脉粥样硬化和心血管疾病的患病率有关 (Bloise 等人,2022 年)。因此,降低花生中的 VLCFA 含量变得越来越重要,因为它对提高营养品质和健康价值有积极影响。已知植物中 VLCFA 的生物合成受关键酶 b-酮脂酰辅酶 A 合酶 (KCS) 调控 (Wang 等人,2017 年)。在我们之前的研究中,在花生基因组中共鉴定出 30 个 AhKCS 基因。经过基因表达谱和功能分析,一对同源基因 AhKCS1 和 AhKCS28 被鉴定为花生仁中 VLCFA 含量的假定调节因子。现有花生种质资源中 VLCFA 含量范围为 4.3% 至 9.8%,但在 AhKCS1 和 AhKCS28 基因内部或周围未观察到序列变异,这表明
摘要Omega-3脂肪酸(ω-3 FAS)是必不可少的多不饱和脂肪,在人类健康中具有良好的作用,尤其是在调节炎症和支持免疫功能方面。在研究最多的ω-3 FA中是eicosapentaenoic酸(EPA)和二十二烷乙烯烯酸(DHA),这些酸(DHA)主要源自海洋来源,例如鱼油。这些脂肪酸通过影响促炎性介质的产生,包括细胞因子,类花生素和前列腺素,发挥有效的抗炎作用。此外,ω-3 FAS通过产生专门的促进脂质介质(如Resolvins,Protectins和Maresins)来促进炎症的分辨率。在调节先天和适应性免疫反应中,它们的免疫调节作用显而易见。EPA和DHA增强了巨噬细胞的吞噬能力,提高T细胞功能并调节B细胞活性。 这篇评论认真研究了ω-3 FA会影响炎症和免疫功能的分子机制,突出了它们在炎症性疾病,自身免疫性疾病以及心血管疾病和癌症等慢性病中的治疗潜力。 最后,讨论了最佳摄入ω-3 FA的建议和未来研究的潜在领域。 关键字:omega-3脂肪酸;炎症;免疫功能; eicosapentaenoic酸(EPA); Docosahexaenoic Acid(DHA)EPA和DHA增强了巨噬细胞的吞噬能力,提高T细胞功能并调节B细胞活性。这篇评论认真研究了ω-3 FA会影响炎症和免疫功能的分子机制,突出了它们在炎症性疾病,自身免疫性疾病以及心血管疾病和癌症等慢性病中的治疗潜力。最后,讨论了最佳摄入ω-3 FA的建议和未来研究的潜在领域。关键字:omega-3脂肪酸;炎症;免疫功能; eicosapentaenoic酸(EPA); Docosahexaenoic Acid(DHA)
摘要:共轭聚合物是多种下一代电子设备中使用的多功能电子材料。这种聚合物的效用在很大程度上取决于其电导率,这既取决于电荷载体(极性)的密度和载体迁移率。载流子的迁移率又受极性柜台和掺杂剂之间的分离而在很大程度上控制,因为柜台可以产生库仑陷阱。在先前的工作中,我们显示了基于十二烷(DDB)簇的大掺杂剂能够减少库仑结合,从而增加晶状体(3-己基噻吩-2,5-二苯基)的载流子迁移率(P3HT)。在这里,我们使用基于DDB的掺杂剂研究化学掺杂的降级(RRA)P3HT的极化子 - 反子分离的作用,这是高度无定形的。X射线散射表明,DDB掺杂剂尽管大小较大,但在掺杂过程中可以部分订购RRA P3HT,并产生与DDB掺杂的RR P3HT相似的掺杂聚合物晶体结构。交替场(AC)霍尔测量值还确认了类似的孔迁移率。我们还表明,大型DDB掺杂剂的使用成功降低了无定形聚合物区域的极性和柜台的库仑结合,从而在RRA P3HT膜上呈77%的掺杂效率。DDB掺杂剂能够生产具有4.92 s/cm电导率的RRA P3HT膜,该值比3,5,6-Tetrafluoro-7,7,7,8,8-8,8-四乙酸氨基甲烷(F 4 TCNQ)(F 4 TCNQ),传统的载量约为200倍。这些结果表明,在共轭聚合物的无定形和半晶体区域量身定制掺杂剂,是增加可实现的聚合物电导率的有效策略,尤其是在具有随机区域化学的低成本聚合物中。结果还强调了掺杂剂的大小和形状对于产生能够在较少有序的材料中电导的库仑未结合的移动极性的重要性。