截止时间前5天 — 此外,在查看机密规格等时,国防部将指定...每次,所需数量、规格、交货地点、交货日期、交货方式等将在交货指示中指定...
高级数字系统设计 (PC – I) 单元 - I 处理器算法:二进制补码系统 - 算术运算;定点数系统;浮点数系统 - IEEE 754 格式,基本二进制代码。单元 - II 组合电路:CMOS 逻辑设计,组合电路的静态和动态分析,时序风险。功能块:解码器、编码器、三态设备、多路复用器、奇偶校验电路、比较器、加法器、减法器、进位超前加法器 - 时序分析。组合乘法器结构。单元 - III 序贯逻辑 - 锁存器和触发器,序贯逻辑电路 - 时序分析(建立和保持时间),状态机 - Mealy & Moore 机,分析,使用 D 触发器的 FSM 设计,FSM 优化和分区;同步器和亚稳态。 FSM 设计示例:自动售货机、交通信号灯控制器、洗衣机。单元 - IV 使用功能块进行子系统设计 (1) - 设计(包括时序分析)不同复杂程度的不同逻辑块,主要涉及组合电路:
参考文献1。Tomczak,K.,P。Czerwinska和M. Wiznerowicz,《癌症基因组地图集》(TCGA):不可估量的知识来源。当代Oncol(POZN),2015年。19(1a):p。 A68-77。2。Vandereyken,K.,A。Sifrim,B。Thienpont和T. Voet,单细胞和空间多词的方法和应用。nat Rev Genet,2023。24(8):p。 494-515。3。nahm,F.S。,接收器操作特征曲线:临床医生的概述和实际用途。韩国J麻醉剂,2022年。75(1):p。 25-36。4。Bray,F。等,《 2018年全球癌症统计:Globocan在185个国家 /地区在全球36家癌症的发病率和死亡率估计。 ca Cancer J Clin,2018年。 68(6):p。 394-424。 5。 Chen,L。等人,组织病理学图像和多词的整合预测肺腺癌的分子特征和存活。 前牢房Dev Biol,2021。 9:p。 720110。 6。 McQuin,C。等人,Cellprofiler 3.0:生物学的下一代图像处理。 PLOS Biol,2018年。 16(7):p。 E2005970。 7。 Sung,H。等,《全球癌症统计》 2020年:Globocan在185个国家 /地区在全球36种癌症的发病率和死亡率估计。 ca Cancer J Clin,2021。 71(3):p。 209-249。 8。 Kay,C。等人,HR+/HER2+乳腺癌治疗的当前趋势。 Future Oncol,2021。 17(13):p。 1665-1681。 9。 J Thorac Dis,2023。 15(5):p。 2528-2543。 10。Bray,F。等,《 2018年全球癌症统计:Globocan在185个国家 /地区在全球36家癌症的发病率和死亡率估计。ca Cancer J Clin,2018年。68(6):p。 394-424。5。Chen,L。等人,组织病理学图像和多词的整合预测肺腺癌的分子特征和存活。前牢房Dev Biol,2021。9:p。 720110。6。McQuin,C。等人,Cellprofiler 3.0:生物学的下一代图像处理。PLOS Biol,2018年。16(7):p。 E2005970。7。Sung,H。等,《全球癌症统计》 2020年:Globocan在185个国家 /地区在全球36种癌症的发病率和死亡率估计。 ca Cancer J Clin,2021。 71(3):p。 209-249。 8。 Kay,C。等人,HR+/HER2+乳腺癌治疗的当前趋势。 Future Oncol,2021。 17(13):p。 1665-1681。 9。 J Thorac Dis,2023。 15(5):p。 2528-2543。 10。Sung,H。等,《全球癌症统计》 2020年:Globocan在185个国家 /地区在全球36种癌症的发病率和死亡率估计。ca Cancer J Clin,2021。71(3):p。 209-249。8。Kay,C。等人,HR+/HER2+乳腺癌治疗的当前趋势。Future Oncol,2021。17(13):p。 1665-1681。9。J Thorac Dis,2023。15(5):p。 2528-2543。10。Hu,J。等人,基于数字病理学和HR(+)/HER2( - )乳腺癌基于数字病理和深度学习的临床病理特征,多摩学事件和预后的预测。Koch,S.,J。Schmidtke,M。Krawczak和A. Caliebe,多基因风险评分的临床实用性:关键的2023年评估。 J社区基因,2023年。 11。 OTA,M。和K. Fujio,《免疫介导疾病精确医学的多摩学方法》。 炎症,2021年。 41(1):p。 23。 12。 Arehart,C。等人,聚词风险评分预测炎症性肠病的诊断。 Biorxiv,2022。 13。Vander Laak,J。,G。Litjens和F. Ciompi,《组织病理学深度学习:通往诊所的道路》。 nat Med,2021。 27(5):p。 775-784。 14。 ehteshami bejnordi,B。等人,对乳腺癌女性淋巴结转移的深度学习算法的诊断评估。 Jama,2017年。 318(22):p。 2199-2210。 15。 Varga,Z。等人,KI-67免疫组织化学在2级乳腺癌中的可靠性如何? 瑞士乳房和妇科病理学家的质量检查研究。 PLOS ONE,2012年。 7(5):p。 E37379。 16。 Weinstein,R.S。等人,远程病理学,虚拟显微镜和整个幻灯片成像的概述:未来的前景。 Hum Pathol,2009年。 40(8):p。 1057-69。 17。 办公室,N.A。,政府数字化转型:解决效率的障碍。 2023。 18。 2016,马萨诸塞州剑桥:麻省理工学院出版社。Koch,S.,J。Schmidtke,M。Krawczak和A. Caliebe,多基因风险评分的临床实用性:关键的2023年评估。J社区基因,2023年。11。OTA,M。和K. Fujio,《免疫介导疾病精确医学的多摩学方法》。炎症,2021年。41(1):p。 23。12。Arehart,C。等人,聚词风险评分预测炎症性肠病的诊断。Biorxiv,2022。13。Vander Laak,J。,G。Litjens和F. Ciompi,《组织病理学深度学习:通往诊所的道路》。nat Med,2021。27(5):p。 775-784。14。ehteshami bejnordi,B。等人,对乳腺癌女性淋巴结转移的深度学习算法的诊断评估。Jama,2017年。318(22):p。 2199-2210。15。Varga,Z。等人,KI-67免疫组织化学在2级乳腺癌中的可靠性如何?瑞士乳房和妇科病理学家的质量检查研究。PLOS ONE,2012年。7(5):p。 E37379。16。Weinstein,R.S。等人,远程病理学,虚拟显微镜和整个幻灯片成像的概述:未来的前景。Hum Pathol,2009年。40(8):p。 1057-69。17。办公室,N.A。,政府数字化转型:解决效率的障碍。2023。18。2016,马萨诸塞州剑桥:麻省理工学院出版社。Goodfellow I,B.Y.,Courville A,深度学习。
A. AI PINAS:人工智能机器人技术助力新兴需求解决方案 DOST-PCIEERD 涵盖 21 个行业,通常分为工业、能源、新兴技术和特殊关注领域。我们的行业覆盖范围很广,几乎涵盖了所有领域,但卫生和农业除外,而卫生和农业由 DOST 的其他行业委员会负责。人工智能是新兴技术领域的重点行业之一。人工智能是 PCIEERD 的重点领域之一,因为它被视为引领菲律宾迈向第四次工业革命的重要技术之一。尽管人工智能被认为是强大的造福力量,但它也可能颠覆传统的商业模式和流程,从而成为一种威胁。为了最大限度地发挥人工智能的优势,我们需要发展我们在这方面的能力。在最新的 2019 年亚太人工智能就绪指数报告中,菲律宾的总体就绪得分为 44.2(满分 100 分),在新加坡、香港、印度、马来西亚、泰国和印度尼西亚等其他国家中排名第六。首先,为了建立一个能够提高该国在该领域的全球竞争力的熟练专家社区,DOST-PCIEERD 启动了一系列关于数据科学、机器学习、深度学习和人工智能的培训课程。这是与 MOOCs PH、Coursera、Google Philippines、Thinking Machines, Inc. 和 PCIEERD AI 专家委员会合作完成的。迄今为止,DOST-PCIEERD 已完成两个 (2) 个人工智能研发项目,并支持另外七 (7) 个项目。 调用原理 人工智能 (AI) 和机器人技术是工厂内外自动化任务的强大组合。近年来,人工智能在机器人解决方案中越来越普遍,为以前僵硬的应用引入了灵活性和学习能力。在全球市场上,主要的人工智能投资是商业和医疗保健,其次是金融和网络安全。支持的其他人工智能应用包括娱乐、体育、社交网络、教育、智能家居和公共安全。但在菲律宾,用于灾害风险管理和基础设施的人工智能是我们 2022-2024 年的主要优先事项。这与菲律宾发展计划(2017-2022)相一致,旨在继续建设灾害风险减少和管理 (DRRM) 利益相关者的能力并改善他们的协调服务。该计划同样与协调国家研发议程(2018-2022)相一致,旨在通过新兴技术提高相关利益相关者和行业竞争力。征集目标 提议的项目必须针对以下优先领域开发技术,并最好将其应用于灾害风险管理和基础设施。征集范围
量子非局域性是多体量子系统的一个典型现象,它没有任何经典对应物。纠缠是最具代表性的非局域量子关联之一,它不能仅通过局域操作和经典通信(LOCC)来实现 1、2。众所周知,量子纠缠的非局域性质可用作许多量子信息处理任务的资源 3。量子非局域现象也可以出现在多体量子态鉴别中,这是量子通信中有效信息传输的重要过程。一般来说,正交量子态可以肯定地加以区分,而非正交量子态则无法做到这种区分。沿着这个思路,需要状态鉴别策略来至少以某个非零概率 4 – 7 鉴别非正交量子态。然而,当可用的测量仅限于 LOCC 测量 8 时,多体量子系统的某些正交态无法肯定地加以区分。由于在没有可能的测量限制时正交态总是能够被确定地区分,LOCC 测量的这种有限的鉴别能力揭示了量子态鉴别中固有的非局部现象。量子态鉴别的非局部现象也可能出现在鉴别多体量子系统的非正交态时;众所周知,某些非正交态不能仅使用 LOCC 9 – 11 进行最佳鉴别。因此,多体量子态 12 – 19 的最佳局部鉴别受到了广泛关注。然而,实现最佳局部鉴别仍然是一项具有挑战性的任务,因为很难对 LOCC 进行很好的数学表征。克服这一困难的一个有效方法是研究最佳局部鉴别的最大成功概率的可能上限。为了更好地理解最佳局部鉴别,建立实现这种上限的良好条件也很重要。最近,在二体量子态的局部最小误差鉴别中建立了最大成功概率的上限。此外,还给出了该上界饱和的必要充分条件20。在这里,我们考虑任意维数的多部分量子态之间的无歧义鉴别(UD)21 – 24,并为最佳局部鉴别的最大成功概率提供上限。此外,我们提供了实现该上界的必要充分条件。我们还建立了该上界饱和的必要充分条件。最后,我们使用多维多部分量子系统中的示例来说明我们的结果。本文组织如下。在“结果”部分,我们首先回顾多体量子系统中可分离算子和可分离测量的定义和一些性质。我们进一步回顾了UD的定义并提供了一些最优UD的有用性质(命题1)。作为本文的主要结果,我们给出了利用一类作用于多体希尔伯特空间的Hermitian算子实现最优局部鉴别的最大成功概率的上界(定理1)。此外,我们给出了Hermitian算子实现该上界的必要充分条件(定理2和推论1)。我们还建立了该上界饱和的必要充分条件(推论2)。我们通过多维多体量子系统中的例子说明了我们的结果(例子1和2)。在“方法”部分,我们提供了定理1的详细证明。在“讨论”部分,我们总结了我们的结果并讨论了与我们的成果相关的可能的未来工作。
摘要:我们提出了创建远程静止量子比特的多体格林伯格-霍恩-泽林格 (GHZ) 态和 W 态的有效协议。系统的非均匀性和/或非理想单光子散射通常会限制纠缠创建的性能,并导致实际量子信息处理中保真度和效率的下降。通过使用线性光学元件,由系统非均匀性和非理想光子散射引起的误差可以转化为协议中的预示损失。因此,生成的多体纠缠态的保真度保持不变,只有效率降低。远程静止量子比特的 GHZ 态以并行方式创建,其生成效率显着提高。在创建 N 个远程静止量子比特的 W 态的协议中,输入单光子以叠加态准备并并行发送到 N 条路径。我们利用双空间模式干涉消除了“哪条路径”单光子散射的“知识”,使得创建 N 量子比特 W 态的效率与静止量子比特的数量无关,而不是呈指数下降。