附录 A 准备通知 (NOP)、初步研究、范围界定会议材料和 NOP 意见 A-1 准备通知 A-2 初步研究 A-3 范围界定会议材料 A-4 NOP 意见 附录 B 空气质量和温室气体排放计算 附录 C 历史报告 附录 D 考古资源报告 附录 E 能源计算 附录 F 岩土报告 附录 G 古生物资源评估报告 附录 H 第一阶段 ESA 附录 I 水文报告 附录 J 土地使用计划和政策 - 项目比较表 附录 K 噪音计算工作表 附录 L 公共服务信息请求回复 L-1 卡尔弗城消防局信函 L-2 洛杉矶消防局信函 L-3 卡尔弗城警察局信函 L-4 洛杉矶警察局信函 附录 M 交通影响研究 附录 N 部落文化资源文档 附录 O 供水评估 O-1 GWSC WSA O-2 LADWP WSA 附录 P 公用事业报告 附录 Q 固体废物计算
集成电路 (IC) 行业是数字化进程的基础,是当前和未来应用最重要的使能技术。这得益于摩尔定律预测的 IC 工艺的巨大微型化和性能改进,从 1970 年第一款英特尔 4004 微处理器上的约 103 个晶体管开始,到 2022 年 3 月(Apple M1 Ultra)达到 1011 个晶体管 [1],这是前所未有、无与伦比的改进速度,它推动了互联网、移动通信以及现在的智能汽车等发明的诞生。简而言之,每个引入 IC(微芯片或简称芯片)的行业都受益于更高的效率、智能化和扩展的功能。由于这一成功,芯片如今已成为全球第四大交易产品(2021 年出货了 115 万个半导体单元),仅次于原油、机动车及其零部件和成品油。2021 年,芯片市场价值为 0.6 万亿美元,销售额同比增长 26%,预计到 2035 年将达到 1 万亿美元 [2]。一些分析人士甚至将芯片称为新石油,因为芯片为应用提供“动力”,使能够利用尖端技术生产出最高性能芯片的国家在计算和通信能力方面以及从纯粹的军事角度来看都比其他国家更强大。到目前为止,俄乌战争强调的一个概念是,乌克兰军队使用了小型且相对便宜的武器,例如标枪和毒刺防空导弹,它们采用先进的半导体作为制导系统。一颗“标枪”导弹约有 250 块芯片 [3]。西方国家禁止向俄罗斯出口半导体,而俄罗斯自己没有先进的芯片生产能力;没有进口,俄罗斯军方就无法为自己提供精确制导弹药。令人惊讶的是,芯片在全球经济中的关键作用直到最近才得到各国政府的认可和公众辩论。近几十年来,全球经济更多地关注软件和第三产业,而芯片则成为纯粹的商品。然而,新冠疫情和乌克兰战争凸显了芯片短缺(芯片产量不足以满足需求)的问题、全球供应链的脆弱性以及芯片价格的波动性。
由于柴油和石油发电机的燃料成本高昂,孟加拉国已具备与一些柴油和石油发电机的成本竞争力。到本世纪末,光伏系统将与孟加拉国的新建煤炭和天然气发电厂具备成本竞争力(图 10、图 11)。由于锂离子电池价格下降,预计到 2030 年光伏系统的 LCOE 将降至 66-134 美元/兆瓦时,到 2050 年将降至 37-84 美元/兆瓦时。这些范围基于电池大小与光伏容量的关系。LCOE 的上限显示 100% 的容量,下限显示 25% 的容量。同样,在 2030 年代上半叶,陆上风电与电池搭配使用预计也将比新建煤炭和天然气发电厂更便宜。
这项研究由美国国家航空航天局赞助。本出版物中表达的任何意见、发现、结论或建议不一定反映为该项目提供支持的任何组织或机构的观点。共识研究报告的副本可从美国国家科学院出版社 (800) 624-6242 或 https://nap.nationalacademies.org/catalog/27519 或 nationalacademies.org/nasa-crossroads 获取。
在过去十年中,数字孪生的概念迅速流行起来,但尽管有大量的评论、调查和新闻稿,但围绕其定义的多样性、其作为新技术的新颖性以及其实际适用性仍然存在混淆。本文探讨了数字孪生一词的历史,以及它在产品生命周期管理、资产维护和设备车队管理、运营和规划领域的初始背景。本文还基于七个基本要素,提供了利用数字孪生的最小可行框架的定义。本文还概述了采用数字孪生方法的数字孪生应用和行业。本文重点介绍了数字孪生框架在预测性维护领域的应用,以及利用机器学习和基于物理的建模进行的扩展。采用机器学习和基于物理的建模相结合的方式形成混合数字孪生框架,可以协同缓解每种方法单独使用时的缺点。另外讨论了在实践中实施数字孪生模型的关键挑战。随着数字孪生技术的快速发展和成熟,其在大幅增强复杂设备智能维护工具和解决方案方面的巨大潜力有望实现。