静态 IP 路由、浮动静态路由、多网、代理 ARP、动态 IP 路由(OSPFv2、RIPv1/v2)、VRRPv2/v3、协议独立组播 - 稀疏模式(PIM-SM)、静态组播路由、状态检测防火墙、防火墙命中计数器、IP 伪装(NAT/NAPT)、端口转发、无状态 NAT(1-1 NAT)、IPsec VPN(IKEv2 PSK)、SSL VPN(客户端和服务器、证书认证、预共享密钥 (PSK) 点对点模式、第 2 层和第 3 层 VPN、第 2 层 VPN 桥接、每个 CN 的地址池和地址、TLS 认证)、通用路由封装(GRE)、基于策略的路由、等价多路径 (ECMP)、OpenVPN 多路径 TCP (MPTCP)、路由监控器
PL-B771是一款高性能1.3百万像素单色相机,专为各种工业和机器视觉应用而设计。SXGA分辨率(1280 x 1024)以每秒30帧提供。该相机传感器基于Aptina(以前是微米)CMOS滚动快门渐进式扫描传感器,具有1/2英寸的光学格式。工厂校准的数字像素校正和机上平面校正(FFC)提供了类似于高端CCD摄像机的图像质量,但价格更高。外部触发和2个通用输出为用户提供了使相机与其过程和照明同步的灵活性。
作者:Bob Prieto 在许多市场中,我们看到资本建设项目的规模和复杂性急剧增长。与所有项目一样,这些项目由一系列独立但紧密相关的项目组成,当它们全部完成时,所有者可以实现一系列明确的战略目标。正如我们看到随着总安装成本从数亿美元扩大到数十亿美元的低个位数范围(所谓的大型项目)而出现一系列非线性的扩展效应一样,随着项目规模扩大到数百亿美元,我们也看到了一系列新的非线性扩展效应。我将这种新规模的项目称为“千兆”项目,以突出与当今大型项目的不同之处。“千兆”项目在许多方面带来了新的挑战,但与大型项目一样,两个主要方向是管理规模的阶跃变化和复杂性的指数级变化,因为界面数量和影响机会以明显的非线性方式增长。但“千兆”项目也带来了新的机遇,其中最主要的机遇与这些项目为所有者带来的杠杆作用的大幅提升有关。战略项目管理就是要理解“千兆”项目和“巨型”项目之间的差异,更重要的是,要批判性地理解成功交付项目的核心要素,以及它们在交付“千兆”项目时可能如何变化以及它们必须如何相互关联。最重要的是,“千兆”项目要求所有者及其项目经理重新审视他们的角色,并共同在重点、人员、流程和系统方面做出改变,以成功交付“千兆”项目。
2德国:+49 621 776 1111 Pepperl+Fuchs组,请参阅“与Pepperl+Fuchs产品信息有关的一般说明”。美国:+1 330 486 0001新加坡:+65 6779 9091 www.pepperl-fuchs.com fa-info@us.pepperl-fuchs.com fa-info@sg.pepperl-fuchs.pepperl-fuchs.com fa-info@dinfo@d-info@de.pepperl-fuchss.com美国:+1 330 486 0001新加坡:+65 6779 9091 www.pepperl-fuchs.com fa-info@us.pepperl-fuchs.com fa-info@sg.pepperl-fuchs.pepperl-fuchs.com fa-info@dinfo@d-info@de.pepperl-fuchss.com
在模块内部,每对差分电信号都输入到 CDR(时钟数据恢复)芯片。然后,恢复和重新定时的信号被传送到激光驱动器,该驱动器将小的摆动电压转换为驱动冷却 EML 激光器的输出调制。激光驱动器分别控制四个 EML,其中心波长为 1296 nm、1300 nm、1305 nm 和 1309 nm。每个激光器都提供对传输激光功率和调制摆动随温度和电压变化的控制。来自四个激光器的光信号以光学方式多路复用在一起。组合的光信号通过行业标准 LC 光连接器耦合到单模光纤。光信号经过设计,符合 100 千兆以太网或 OTU4 规范。
在模块内部,每对差分电信号都输入到 CDR(时钟数据恢复)芯片。然后将恢复和重新定时的信号传递到激光驱动器,该驱动器将小的摆动电压转换为驱动冷却 EML 激光器的输出调制。激光驱动器分别控制四个 EML,其中心波长分别为 1296 nm、1300 nm、1305 nm 和 1309 nm。每个激光器都提供对传输激光功率和调制摆动随温度和电压变化的控制。来自四个激光器的光信号在光学上被多路复用在一起。组合的光信号通过行业标准 LC 光连接器耦合到单模光纤。光信号经过设计以满足 100 千兆以太网或 OTU4 规范。
基于MOSFET的集成电路和基于TFT的平板显示器是全球最大的两个微电子产业。前者的总体趋势是将器件尺寸缩小到纳米级;后者的趋势是将产品尺寸增加到几米。薄膜对于器件的性能和可靠性至关重要。除了严格控制几何形状、轮廓和产量外,成功的制造工艺还必须满足三个基本要求:大面积、高产量和低温。等离子体工艺,即等离子体增强化学气相沉积(PECVD)、等离子体蚀刻(PE)/反应离子蚀刻(RIE)和溅射沉积,已被证明能有效满足上述要求。虽然对纳米和千兆级微电子的要求截然不同,但它们可以通过基于基本等离子体物理和化学描述复杂的工艺-材料-器件关系来实现。在本次演讲中,将给出使用PECVD工艺操纵体膜和界面特性以获得优化的器件特性的示例。此外,还将讨论在等离子蚀刻工艺中实现高蚀刻选择性、倾斜边缘轮廓和最小化辐射对晶体管的损伤的原理。此外,还将回顾高结晶温度、用于栅极电介质的非晶亚纳米 EOT 高 k、纳米晶体嵌入非易失性存储器以及通过溅射沉积法制备的新型固态白炽发光器件。创新方法(例如新的基于等离子的室温铜蚀刻工艺)可以解决当前行业以及未来半导体制造中的许多挑战性问题。
30W。PoE 总功率预算高达 225W。• 支持 3 种工作模式。(默认、VLAN、CCTV)。• 支持 VLAN 和 CCTV 模式下的 PoE 看门狗。它提高了摄像机的在线率。
免责声明。此处发布的信息(“信息”)是基于可以认为可靠的来源,通常是制造商,但是提供了“原样”,而无需保证正确性或完整性。信息仅是指示性的,并且可以随时更改而无需注意。没有任何权利可以基于信息。此信息的供应商或聚合器对(Web)页面和其他文档(包括其信息)的内容不承担任何责任。信息的发布者对链接此信息或从此信息链接到的第三方网站的内容不承担任何责任。作为信息的用户,您完全负责此信息的选择和使用。您无权传输,复制或以其他方式乘以或分发信息。您有义务遵循有关信息的使用方向。仅适用荷兰法律。关于本网站上的价格和股票数据,发布者遵循了许多起点,这些起点不一定与您的私人或商业情况有关。因此,价格和股票数据仅指示,并且会发生变化。您对使用和应用此信息的方式负责。作为包含此信息的信息,网站或文档的用户,您将遵守标准的公平用途,包括避免垃圾邮件,撕裂,智力侵犯智力 - 违反隐私权和任何其他非法活动。
30 多年来,MIL-STD-1553 一直满足军事系统集成商的需求,特别是在指挥和控制应用领域。然而,高速数字化传感器、文件传输、处理器集群和显示器等当代应用需要的数据速率远高于 1553 的 1Mb/s。对于某些环境,特别是对于传统飞机,可选的解决方案是通过现有的 1553 总线传输更快的数据速率。但是,还有其他应用可以通过部署千兆或多千兆铜缆或光纤交换结构网络来适应和受益。除了 MIL-STD-1553 之外,本文还介绍并评论了几种航空电子网络技术,包括高速 1553、光纤通道、千兆以太网和 ARINC 664(一种配置以太网)。