换算系数(与公制单位的近似换算) 换算自 功能 值 长度 英寸 米 除以 39.3701 英寸 毫米 乘以 25.4000 英尺 米 除以 3.2808 体积 立方英尺 立方米 除以 35.3149 立方英寸 立方米 除以 61,024 截面 模数 英寸 2 英尺 厘米 2 米 乘以 1.9665 英寸 2 英尺 厘米 3 乘以 196.6448 英寸 3 厘米 3 乘以 16.3871 惯性矩 英寸 2 英尺 2 厘米 2 米 除以 1.6684 英寸 2 英尺 2 厘米 4 乘以 5993.73 英寸 4 厘米 4 乘以 41.623 力或质量长吨 吨 乘以 1.0160 长吨 公斤 乘以 1016.047 磅 吨 除以 2204.62 磅 公斤 除以 2.2046 磅 牛顿 乘以 4.4482 压力或应力 磅/英寸2 牛顿/米2(帕斯卡) 乘以 6894.757 千磅/英寸2 兆牛顿/米2 乘以 6.8947(兆帕斯卡) 弯曲或扭矩 英尺吨 米 吨 除以 3.2291 英尺磅 公斤米 除以 7.23285 英尺磅 牛顿米 乘以 1.35582 能量 英尺磅 焦耳 乘以 1.355826 应力强度 千磅/英寸2 英寸 √ 英寸) 兆牛顿 MNm 3/2 乘以 1.0998 J-INTEGRAL 千磅/英寸 焦耳/平方毫米 乘以 0.1753 千磅/英寸 千焦耳/平方米 乘以 175.3
使用经纬仪导航标记浮标的位置。UCT ONE 的潜水员随后安装标记浮标,保持在 20 英尺的公差范围内。SEACON 就位并发射 PEA。安装所有三个后进行 50 千磅的拉力测试。每次发射 PEA 后,UCT ONE 潜水员都会检查锚,而 SEACON 则移向下一个地点。他们仔细检查了弹坑附近的钢丝绳,以确定吊坠在发射过程中是否受损。他们还从穿透点到第一个配件进行了测量,以确定穿透深度。
本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝和钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力起到裂纹抑制器的作用。目前存在预测复合材料补片配置有效性的分析能力,但这种分析需要特定的理想化和假设,必须通过实验验证才能将这项技术应用于实践。因此,该项目有助于将该技术开发为一种有用且可靠的船舶板层断裂修复工具,并力求促进其在工业上的接受和实施。该项目的资金由船舶结构委员会通过海军水面作战中心卡德罗克分部提供,随后由 BMT 设计师和规划师提供给密歇根大学。研究了两种配置。首先研究了长度为 18.0 英寸、宽度为 12.0 英寸、厚度为 0.25 英寸的钢板,中跨处有 3.0 英寸的初始裂纹,没有使用钢筋。然后使用双面加固检查了其他几何形状相似的板。在板的一端施加了 2.0 到 50.0 千磅之间的周期性载荷。在进行这些测试之前,进行了简单的拉伸强度测试,以确定复合材料补片的材料特性和 s
本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝和钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力起到裂纹抑制器的作用。目前存在预测复合材料补片配置有效性的分析能力,但这种分析需要特定的理想化和假设,必须通过实验验证才能将这项技术应用于实践。因此,该项目有助于将该技术开发为一种有用且可靠的船舶板层断裂修复工具,并力求促进其在工业上的接受和实施。该项目的资金由船舶结构委员会通过海军水面作战中心卡德罗克分部提供,随后由 BMT 设计师和规划师提供给密歇根大学。研究了两种配置。首先研究了长度为 18.0 英寸、宽度为 12.0 英寸、厚度为 0.25 英寸的钢板,中跨处有 3.0 英寸的初始裂纹,没有使用钢筋。然后使用双面加固检查了其他几何形状相似的板。在板的一端施加了 2.0 到 50.0 千磅之间的周期性载荷。在进行这些测试之前,进行了简单的拉伸强度测试,以确定复合材料补片的材料特性和 s