美国陆军航空发展局已经开发了两种先进高速旋翼机配置的通用高保真飞行动力学模型——一种是带有推进式螺旋桨的升力偏置同轴直升机,另一种是倾转旋翼机。开发这些模型的目的是为政府提供独立的控制系统设计、操纵品质分析和模拟研究能力,以支持未来垂直升力计划。使用多目标优化方法为这两种配置设计了全飞行包线显式模型跟随控制系统,以满足一系列稳定性、操纵品质和性能要求。在美国宇航局艾姆斯垂直运动模拟器的载人模拟实验中,使用一系列高速操纵品质演示机动对这两种飞机的控制律进行了评估。本文讨论了控制律和载人操纵品质评估的结果。模拟实验的结果显示,两种飞机的总体分配操纵品质均为 1 级。
目前的研究结果表明,飞行过程中大气湍流造成的干扰效应可以显著减少。一种新方法(也已申请专利)可将升力补偿效应提高 10 倍。先前的模拟和无人驾驶试飞结果表明,与无控制飞行相比,干扰效应可能减少 80%。
能够垂直起降的飞机(主要是直升机)帮助陆军执行各种任务,包括攻击、运输和侦察。目前执行这些任务的陆军直升机(如 AH-64 阿帕奇和 UH-60 黑鹰)正在老化,并经历了多次升级。陆军将其未来垂直升力 (FVL) 产品组合视为其最关键的现代化优先事项之一。它指出需要提高飞机能力,例如机动性、杀伤力和续航能力,以跟上潜在对手。在过去的 20 年里,陆军在收购过程中遇到问题后取消了开发新垂直升力能力的尝试。例如,我们之前报道过,科曼奇直升机在 2004 年因成本大幅增加和进度延误而被取消。1 随后,我们报告称,武装侦察直升机(科曼奇的后续项目)匆忙完成了规划过程,跳过了关键的系统工程步骤。最终确定武装侦察直升机的采购战略不可行,该项目于 2008 年终止。2
该课程通过应用物理学,动手活动和现实世界的例子介绍了航空和宇航员的基础。学生将面临航空和宇航员的历史和挑战。(3个讲座)简介:航空航天的历史,气氛,航空航天车的分类,飞机和航天器的基本组件,车辆控制表面和系统,航空航天行业简介,主要航空航天行业和制造商。飞行原则:声音速度,标准气氛的重要性,伯诺利的原理,作用于飞机和航天器上的空气动力学力,空置命名法,压力和速度分布,空气动力,升力和拖拉,升力和拖曳,超音速,超音速效应,超音速效应,空气动力学中心,纵横比比,压力,压力中心,坟墓中心。(2个讲座)航空推进:推进系统,推进系统的分类,位置和操作原理。飞机和航天器的基本原理,布雷顿周期和汉弗莱循环,喷气发动机,螺旋桨发动机,火箭发动机,ramjet和Scramjet。(2个讲座)
客户简报 • D2024T-01 起重机陆军弹药活动 • 2024T-07 AMCOM G3 支持 • 2024T-06 推进和结构技术的技术和工程支持 • 2024T-04 任务设备软件适航性 • 2024L-01 支持 AMCOM ALC 出版物的物流服务 • 2024T-01 货运、固定翼、多平台和未来垂直升力
图 1-1:RIT 的风洞测试第 3 部分图 1-2:RIT 的闭路风洞图 5 图 2-1:用于测量三维流体动力的实验仪器。 (Sunada 等 [5]) 6 图 2-2:实验研究中使用的天平示意图 [3] 8 图 3-1:风轴参考系 14 图 3-2:体轴参考系 15 图 3-3:升力和阻力天平的装配图 16 图 3-4:用于测量升力的天平配置 17 图 3-5:用于测量阻力的天平配置 17 图 3-6:力矩分析图 - 升力配置 22 图 3-7:阻力天平配置的力矩分析图 23 图 3-8:俯仰和滚转力矩天平的装配图 24 图 3-9:俯仰和滚转力矩天平的测试平台装配图 25 图 3-10:装配式焊条测试平台 26 图 3-11:俯仰力矩天平配置 28 图 3-12:滚动力矩天平配置 28 图3-13: 俯仰力矩分析图 29 图 3-14: 滚转力矩分析图 30 图 4-1: 实验元素图 34 图 4-2: 升力配置 36 图 4-3: 阻力配置 36 图 4-4: 俯仰力矩配置 38 图 4-5: 滚转力矩配置 38 图 4-6: 平板力矩校准图(零速度且无翼型) 40 图 4-7: 平板俯仰力矩数据 40 图 4-8: 俯仰实验测试平台设置 42 图 4-9: LinAir 涡流面板法翼型 44 图 4-10: 二面角和滚转力矩系数 45 图 5-1: 升力和系数的实验值 53 图 5-2: 实验升力数据与已发布数据的比较 55 图 5-3: 实验阻力数据 56 图5-4:实验阻力数据与公布数据的比较 57 图 5-5:实验俯仰力矩数据 58 图 5-6:俯仰力矩实验值和公布值 60 图 5-7:实验数据;滚动力矩 61 图 5-9:滚动力矩系数与分析模型的比较 62 图 7-1:附加质量的平衡设计 68
联合研究项目 HINVA 的目标是显著提高部署高升力装置的民用飞机气动性能预测和评估的准确性和可靠性。为了实现这一目标,目前工业上使用的最先进的数值和实验模拟方法将根据最大升力状态的飞行测试数据进行验证。该项目以相关欧洲项目(如 EUROLIFT)和 GARTEUR 研究中获得的经验和发现为基础。DLR 的飞行测试飞机空客 A320-200 ATRA 是三个方法领域飞行测试、欧洲跨音速风洞 ETW 中的高 Re-No 测试以及使用 DLR 的 TAU 代码进行数值模拟的共同配置基础。基线设备设置对应于着陆配置。还研究了巡航配置。该项目的核心要素是生成一个专用的、完全协调的验证数据库,该数据库由风洞和相应的飞行测试数据组成。以协同的方式利用所有三个方法领域的独特优势,可以定性和定量地确定此类飞机最大升力状态下的主要空气动力学现象。研究结果将为使用和应用数值工具以及低温测试提供新的模拟策略,以确定工业高升力设计过程精度范围内的升力系数和攻角方面的最大升力。该项目细分为三个主要工作包:ATRA 飞行测试、ETW 风洞测试和 CFD 模拟。基线几何和 CAD 模型的规范已基本完成。已经进行了全面的数值模拟以支持飞行测试仪器。空中客车公司和德国航天中心正密切合作,共同进行飞行测试规划和飞行测试仪器的开发,为首次飞行测试活动做准备。
预计未来20年中国将需要750架新建或改装货机,全球90%的改装货机来自中国[1,2]。但中国国内企业在工程设计、适航取证、改装、维修等产业链中仍处于底端。难点之一是缺乏符合民机适航标准、拥有知识产权、供应链完整的货舱门执行器[3,4]。考虑到ARJ21-700主货舱门尺寸庞大、结构重量较大,MCDAS由锁定执行器、闩锁执行器和升力执行器组成,依次控制锁定机构、闩锁机构和升力机构,实现货舱门的开闭。执行器位置图如图所示。1.每个执行器都是机电式,由电动机、减速齿轮系、输出轴和手动驱动机构组成。当向电动机供电时,电动机的输出扭矩通过减速正齿轮和行星齿轮传递到输出轴 [ 5 ]。锁执行器是由低功率永磁同步电动机驱动的线性执行器,而闩锁和升降执行器是由交流 (AC) 电动机驱动的旋转执行器。ACE 关于锁执行器的部分参考文献 [ 6 ]。
飞艇的演变导致了以前从未有过的阶级和类型的出现,也不存在。许多研究人员试图对俄罗斯和外国的飞艇进行分类。因此,Scdeteg Transult Company(法国)提议将飞艇分为2.5-5吨(轻型飞艇),10-25吨(小型飞艇),50-100吨(中型飞艇)和150-500-500吨(重型飞船)。R.A.的飞艇分类霍夫曼(Kiev Design Bureau)提供了类别的分类,例如身体形状,轴承量的大小,电路等等,这些分类涵盖了飞艇的所有主要特征,并为它们提供了技术和经济认证[1]。 为了评估飞艇在经济中可能使用飞机运营的范围,并考虑了该技术的实施功能,我们选择了创建升力作为分类的主要特征的方法。 空气静态飞机包括空运和飞艇(受控的气柱),分为三种类型:游离的气体固定仪(气球),如果它们用空气质量移动,则用电缆将停泊的Aerostats(第二类)固定在地面上。 除了由载气外壳中的载气产生的升力外,空气围绕它流动时会发生动态力。 为了减少阻力,将系泊气星的壳构成空气动力学配置。 通过在电缆上安装稳定器和悬架系统来实现Aerostat的稳定性。R.A.的飞艇分类霍夫曼(Kiev Design Bureau)提供了类别的分类,例如身体形状,轴承量的大小,电路等等,这些分类涵盖了飞艇的所有主要特征,并为它们提供了技术和经济认证[1]。为了评估飞艇在经济中可能使用飞机运营的范围,并考虑了该技术的实施功能,我们选择了创建升力作为分类的主要特征的方法。空气静态飞机包括空运和飞艇(受控的气柱),分为三种类型:游离的气体固定仪(气球),如果它们用空气质量移动,则用电缆将停泊的Aerostats(第二类)固定在地面上。除了由载气外壳中的载气产生的升力外,空气围绕它流动时会发生动态力。为了减少阻力,将系泊气星的壳构成空气动力学配置。通过在电缆上安装稳定器和悬架系统来实现Aerostat的稳定性。第三种类型包括能量播放器,在其上安装小型电机设备以调整相对于地面上给定点的位置。上述气柱的设计并不复杂,并且仅在壳的体积中有所不同。飞艇可以按以下标准进行分类:承载能力,身体形状,船体的功率电路,类型的载气和控制系统。
摘要 美国空军进行了数年的研究,研究弹头引起的损伤对升力面的气动弹性完整性的影响,进而导致整架飞机的失稳。这促使我们研究飞机特定部位的结冰如何引发类似的气动弹性事件和飞机失稳。虽然很少研究,但结冰也会严重影响飞机的气动弹性稳定性,从而影响整个飞机的稳定性和控制,并最终导致不可逆的失稳事件。在后一种情况下,由于冰引起的质量不平衡或控制铰链力矩和力反转,可能会发生升力面和控制装置的经典颤振事件。此外,由于结冰引起的分离流条件引入了显著的时间相关阻力,控制装置和升力面的极限环振荡可能会导致控制效果的丧失。本文回顾了小型通用航空飞机中引发这些冰致失控事件的机制。该回顾基于文献和德克萨斯大学奥斯汀分校进行的早期实验工作。选择了两种常见的冰致飞机稳定性和控制失控场景进行研究。第一个失控场景涉及升降机极限环振荡和由此产生的