1儿科,妇科和妇产科系,CANSEARCH研究平台,儿科肿瘤学研究平台,瑞士日内瓦大学,日内瓦大学,日内瓦大学医学院2蒙佩利·埃雷恩·亚历山大·格罗顿迪克(Imim),CNRS,UMR 5149,蒙彼利埃大学,蒙彼利埃大学,蒙彼利埃,法国5149,法国5149,临床药理学和毒理学部,部门巴塞尔,巴塞尔,瑞士和巴塞尔大学,瑞士巴塞尔大学8血液学分部,骨髓移植单元,日内瓦大学医院,日内瓦大学医院和医学院,瑞士日内瓦大学医学肿瘤学和血液学系9日内瓦大学医学肿瘤学和血液学系,瑞士苏里奇,瑞士,瑞士,瑞士学院10级,船长学院。瑞士Aarau 11儿科肿瘤学和血液学分校,瑞士日内瓦大学日内瓦医院妇女,儿童和青少年系
摘要:由于人口的增长,该国对电力的需求正在增加。为了满足峰值负载需求,可再生能源(例如A.C.输入)可以与常规来源一起使用。但是,非线性电子设备的广泛使用导致网格连接系统中的功率质量问题。这是因为电源电子转换器将谐波注入系统,从而导致各种问题。在这项研究中,使用边界传导模式(BCM)提升和功率因数校正(PFC)转换器来提高功率质量。BCM DC-DC转换器是高频转换器,可通过降低DC总线电压来调节不受管制的d.c.功率并降低MOSFET上的电压应力。使用交织的脉冲宽度调制(PWM)来管理开关。减少进入和交付纹波电流并允许减少输出电容。DC-DC转换器的三个基本配置是雄鹿,增压和降压转换器。降压转换器可以降低或增加输入电压,而增强转换器由于其低和不受监管的输出电压而通常用于可再生能源系统中。通过模拟和硬件实施进行输出评估,从而显着提高了功率因数。
基于可再生能源的 KY 升压转换器和七电平逆变器系统综述 Gopika BS 1* 和 Rajeshwari 2 1 印度泰米尔纳德邦哥印拜陀 Dhanalakshmi Srinivasan 工程学院电气与电子工程系助理教授。 2 印度卡纳塔克邦 Chintamani 政府理工学院电气与电子系高级讲师。 通讯作者(Gopika BS)电子邮件:gopikabs@dsce.ac.in * DOI:https://doi.org/10.46431/MEJAST.2025.8103 版权所有 © 2025 Gopika BS 和 Rajeshwari。这是一篇开放获取的文章,根据知识共享署名许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是注明原作者和出处。文章收稿日期:2024 年 11 月 11 日 文章接受日期:2025 年 1 月 18 日 文章发表日期:2025 年 1 月 25 日
微生物燃料电池 (MFC) 是一种基于微生物的燃料电池 (MFC),可通过细菌活动产生可再生能源。通过使用产电细菌作为催化剂,这种生物电化学燃料电池能够将化学能直接转化为电能。产电细菌通过一系列细胞外电子转移 (EET) 机制(称为阳极呼吸)将电子转移到 MFC 的阳极,产电细菌专门通过氧化提取电子。产生的电子随后被转移到阴极,在阴极上用于氧化化合物的还原反应(即电能(或者,在空气阴极MFC的情况下,是氧气)[1]。通过添加营养物质作为能源,可以同时实现可再生能源的生产。因此,人们认为利用有机废物发电的MFC技术前景广阔。然而,由于MFC的内阻大、输出电压低,单个MFC产生的能量实际上是无用的,这是主流的MFC技术(它甚至不能直接激活低功率电子设备)
摘要:本文介绍了一种用于光伏系统的三相交错升压转换器的突破性设计,利用并联的传统升压转换器来降低输入电流和输出电压纹波,同时提高动态性能。这项研究的一个显着特点是将锂离子电池直接连接到直流链路,从而无需额外的充电电路,这与传统方法不同。此外,MPPT 控制器和闭环模糊控制器与电流控制模式的组合可确保为所有三个相位生成准确的开关信号。精心调整的系统在输出电压中表现出非常低的纹波含量,超过了计算值,并表现出卓越的动态性能。研究延伸到对损耗的全面分析,包括电感器铜损和半导体传导损耗。在所有情况下,转换器的效率都超过 93%,凸显了其作为光伏系统有效解决方案的强大性能。
• 宽输入电压工作范围:4.2 V 至 36 V • 宽电池电压工作范围:最高 36 V,支持多种化学成分: – 1 至 7 节锂离子电池充电曲线 – 1 至 9 节 LiFePO 4 充电曲线 • 带 NFET 驱动器的同步降压-升压充电控制器 – 可调节开关频率:200 kHz 至 600 kHz – 可选同步至外部时钟 – 集成环路补偿和软启动 – 可选栅极驱动器电源输入,可优化效率 • 自动最大功率点跟踪 (MPPT),适用于太阳能充电 • 支持 USB-PD 扩展功率范围 (EPR) 的双向转换器操作(反向模式) – 可调节输入电压 (VAC) 调节范围:3.3 V 至 36 V,步进为 20 mV – 可调节输入电流调节 (R AC_SNS ):400 mA 至 20 A,步进为 50 mA,使用 5 mΩ 电阻 • 高精度 – ±0.5% 充电电压调节 – ±3% 充电电流调节– ±3% 输入电流调节 • I 2 C 控制,可通过电阻可编程选项实现最佳系统性能 – 硬件可调输入和输出电流限制 • 集成 16 位 ADC,用于电压、电流和温度监控 • 高安全集成 – 可调输入过压和欠压保护 – 电池过压和过流保护 – 充电安全定时器 – 电池短路保护 – 热关断 • 状态输出 – 适配器当前状态 (PG) – 充电器工作状态(STAT1、STAT2) • 封装 – 36 引脚 5 mm × 6 mm QFN
SLG47513 具有相对较低的电流输出,不适合在高频下驱动高电容负载(如 MOSFET 栅极)。但是,它们的数量充足,不仅可以将它们并联连接以增加输出电流(以及驱动 MOSFET 的能力),还可以组合推挽和开漏输出。这允许分别控制 MOSFET 的开启和关闭时间。在这种情况下,引脚 11、12、13 和 16 配置为 2x 推挽输出,并通过 R1 限流电阻对栅极进行充电和放电。但是引脚 3、4、5、6、8、14 和 15 配置为 2x 开漏输出(引脚 3 和 4 为 1x),直接连接到栅极,并且仅对其电容进行放电,从而加快 MOSFET 的关闭时间,提高转换器效率。
摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
在过去的几十年里,能源短缺和全球变暖问题成为人类严重关切的问题。为了解决这些问题,许多国家都开发了可再生能源 (RES),例如太阳能、风能、水力发电、潮汐能、地热能和生物质能。太阳能通常通过连接到升压转换器的太阳能电池板收集以供给负载。转换器在系统中起着关键作用,因为它控制直流母线的电压。如果转换器发生任何意外故障,太阳能电池板将无法向负载供电。因此,通常需要对转换器进行可靠性评估。在本研究中,使用马尔可夫技术对连接到太阳能电池板的升压转换器进行可靠性评估。该技术被广泛用于评估具有固定故障率和维修率的系统的可靠性和可用性。利用马尔可夫方法,我们发现,对于 = 1000 ℎ ,典型特定转换器的可靠性为 0.9986,其预期寿命或平均故障时间 (MTTF) 为 713247 ℎ 。
(新闻发布 - 立即发布)Salton Sea是北美最大,最多样化的可再生能源机会投资组合的中心,从加利福尼亚州获得了支持,从而从大量的Salton Sea中获得了地热盐水的锂提取。州长加文·纽瑟姆(Gavin Newsom)已由议会议员爱德华多·加西亚(Eduardo Garcia)签署了法律立法,该法律将建立一个蓝带委员会,以制定策略来从地热盐水中提取电池的锂。AB 1657指示加利福尼亚能源委员会(CEC)建立一个由14名成员组成的委员会,以帮助制定一项行动计划,以加快计划和计划,从索尔顿海附近的地热盐水中提取锂。委员会将包括议会议长和参议院规则委员会的任命,还包括公共事业委员会成员,汽车制造业,地热行业和地方政府代表的代表。“萨尔顿海地区的巨大锂储量有可能锚定州的气候目标,同时在该州最经济沮丧的地区之一创造了数千个良好的工会工作。SSA感谢州长采取的行动,以及我们自己的集会筹集者爱德华多·加西亚(Eduardo Garcia)是萨尔顿海毫不掩饰的冠军,他介绍和推进了这项重要的立法。此外,委员会还将建议方法简化与锂相关的设施的允许。委员会将承担的任务是评估可能的联邦,州和地方激励措施,以鼓励对锂提取和潜在锂离子制造业的发展进行经济投资。委员会被指示向州长和立法机关提出建议,以创建有利的监管和投资环境,以从地热中提取锂,并于2022年10月1日之前向州长报告。菲尔·罗森特里特(Phil Rosentrater)表示,CEC致力于开发可再生能源和锂在海洋周围的锂提取,这为更健康,更繁荣的索尔顿海地区带来了新的希望。SSA机构支持合作计划,以开发一个外围湖项目,该项目可以涵盖尘土飞扬的普拉亚,并与娱乐和可再生能源的经济机会恢复栖息地。