M. D. D. D. D. D. Dorid:https:/orcid.org/0003-0 ttts://orcid.org/ordinary.org/ordinary.org/ordinary.org/ordinary.org,n. orcid:htts:httts:https:https:https:https:/orcid:/orcid:/ hettts:/orcid.org/orgid.org/ordinary.org/ordinary.org 2001- 5758-601,希克勒(Hickler) H./orcid,H。Cariid:Lidid:Lidid:/orcid:/orcid:/orcid:/orcid:/orcid:/orcid:/orcid:/orcid:/orcid。 001-6 ORID:httts:/orcid.org/00002-002-002-002-0 thttps:/orcid.org/orgid.org/orginary.org/ordinary.org/ordinary.org/ordinary.org/ordinary..org,A.Oricid:oricid:https:https:https:https:https:https:https:https:https:https:https:https: htts:/orcid.org/orcid.org/orcid.org/orcid.org/orchid。 hetttts:/orcid.org/ordinary.org/ordinary.org/ordinary.org/ordinary.org,C.,albaboni,albour,10000,1000002-5 hettts://orcid.org/orgid.org/orgid.org/ordinary.org/ordinary.org/ordinary.org/ordinary.org/ordinary.org/ordinary.org/org/orcid.orcid.orcid:orc.orcorc::orcorc::orcorc::orcorc: htts:/orcid.org/orcid.org/orchid。 Hetts:/orcid.org/orgid.org/ordinary.org/hergid.rg/0001-7276-766X, Duveiller, G Hettps:/orcid.org/orgid.org/ordinary.org/ordinary.org/ordinary.org/ordinary.org, A. ARCID: htts:/pronery:/orcid.org/ord.org/ord.org/ord.org/ord.org/ord.org/ordinary。 tttts:/orcid.org/orgid.org/ordinary.org/ordinary.org/ordinary.org,Guerra,C.A.Corid:htts:htts:/orcid.org/orcid.org/00000000000000000000000000000000000000000003-4917-2105-2105,
Stevens,B。Orcid:https://orcid.org/0000-3795-3795-0475,Adami,Adami,Ali,Anzt,H.,Aslan,H.,Aslan,Z.,Attinger,S.,S.,S.,S.,S.,S. https: ORCID: https://orcid.org/0000-0000-0002-4366- 3088, Cao, J., Castet, C., Cheng, Y. ORCID: https://orcid.org, Crewell, S. ORCID: https://orcid.org/0000-0000- ORCID: https://orcid.org/0000-0002-1240-1368,Eyring,V。Orcid:orcid:orcid:https://orcid.org/000000-0003-0644-7164 https://orcid.org/0000-0002-8615-5702,Freer,O。Orcid:https:6010-6638,Goldfarb,D.,Grieger,J.Orcid:
一种常见的局外人方法是解决创始人作为目标客户客户个人经历的问题,但是在他们了解的领域中。Procore*的创始人不是来自建筑行业,但在努力管理自己的房屋的建设时,他间接经历了该行业的痛苦。创始人解决他们个人遇到的问题的其他重要示例包括Shopify*,Intercom*,Canva*,Pipedrive*,VTS*和Dropbox。这些局外人将他们的挫败感引起了用户的挫败感,该产品将使其他所有人受益。学生创始人几乎总是会成为局外人,因为他们的工作经验有限,但即使是经验丰富的创始人有时也会选择破坏局外人。 在成立阶段,Toast*(餐厅POS)和Hibob*(SMB HRI)的创始人在很大程度上对各自的部门一无所知,他们着手改变这些部门,这是一个关键优势。学生创始人几乎总是会成为局外人,因为他们的工作经验有限,但即使是经验丰富的创始人有时也会选择破坏局外人。在成立阶段,Toast*(餐厅POS)和Hibob*(SMB HRI)的创始人在很大程度上对各自的部门一无所知,他们着手改变这些部门,这是一个关键优势。
光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 大挑战:基本定律和宇宙;“突破摄星”大挑战基金 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。“突破摄星”是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。计划使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这一目标成为现实,必须克服许多实际和概念上的挑战。其中之一就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目,需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。
大挑战项目 光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。突破摄星计划是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。该计划是使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这个目标成为现实,必须克服许多实际和概念上的挑战。其中一个挑战就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目可用,这些项目需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。这些项目由物理基金会的特别大挑战基金资助。
摘要:已知,测量的超高能宇宙射线的能量谱和簇射最大深度分布的组合拟合可以约束具有均匀源分布的天体物理模型的参数。对宇宙射线到达方向分布的研究表明,与一部分通量是非各向同性的并与附近的射电星系半人马座 A 或星暴星系等目录相关的模型有更好的一致性。在这里,我们通过同时拟合到达方向、能量谱和在皮埃尔·奥格天文台测量的成分数据,提出了两种分析的新组合。该模型考虑了刚度相关的磁场模糊和由传播过程中的相互作用形成的目录贡献的能量相关演变。我们发现,包含星暴星系目录的通量贡献约为 20%(40 EeV),磁场模糊约为 20 ◦(10 EV 刚度)的模型可以同时描述所有三个可观测量。星暴星系模型具有 4 的显著性优势。与仅具有均匀分布背景源的参考模型相比,显著性为 5 σ(考虑实验系统效应)。通过研究以半人马座 A 作为单一源并结合均匀背景的场景,我们确认该天空区域对观测到的各向异性信号具有主导贡献。然而,包含喷流活动星系核目录的模型(其通量与 γ 射线发射成比例)不受欢迎,因为它们无法充分描述测量到的到达方向。
无处可藏。“我知道这会让所有潜艇爱好者和隐形装置爱好者大吃一惊,但太空中没有隐形。太瓦级飞船的废气或废热可以从半人马座阿尔法星通过原始的被动传感器探测到。航天飞机弱得多的主发动机可以在冥王星轨道之外探测到。航天飞机的机动推进器可以在小行星带中看到。甚至一艘使用离子驱动器以微不足道的毫重力推力的微型飞船也可以在一个天文单位处被发现。截至 2013 年,旅行者 1 号太空探测器距离地球约 180 亿公里,其无线电信号只有可怜的 20 瓦(或与冰箱中的灯泡一样暗)。但尽管它很微弱,但绿岸望远镜可以在一秒钟内从背景噪音中分辨出来。即使是生命支持系统的废热也很容易被检测到。” — Winchell Chung,原子火箭/Rho 项目网站,2013 年。
灵活月球探索架构 (FLARE) 的概念是将四名机组人员送上月球表面,在月球表面停留至少七天,然后安全返回地球。只要组件车辆投入运行,FLARE 就可以实施。FLARE 是作为 NASA 载人着陆系统 (HLS) 参考架构的替代方案而开发的,该架构来自 2019 年创建的设计分析周期 (DAC) #2。DAC2 指南要求在近直线晕轨道 (NRHO) 中使用 Gateway 车辆。相反,FLARE 选择低月球冻结极地轨道 (LLFPO) 进行组件的月球会合,并选择 Gateway 车辆。LLFPO 提供每 2 小时飞越南极一次的稳定轨道,确保可以轻松进入月球表面进行表面中止,并且推进剂需求比 NRHO 低得多。最小 FLARE 概念使用一次太空发射系统 (SLS) 发射、一个猎户座火箭、一个欧洲服务舱 (ESM) 和一个载人着陆器(通过商用飞行器发射)。FLARE 增加了 SpaceTug,它以成熟成功的 ULA“通用”半人马座上面级运载火箭为基础,经过修改后可打造出地月转移飞行器。在 FLARE 基线任务中,SpaceTug 提供将猎户座 + ESM 从 LLFPO 返回地球所需的推进力。SpaceTug 还提供推进力,将单独的载人着陆器组件——下降组件 (DE) 和上升组件 (AE)——从低地球轨道 (LEO) 运送到 LLFPO。然后,SLS Block 1 发射猎户座 + ESM,并与 LLFPO 中配对的 DE + AE 组件完成会合。FLARE 提供基线任务以外的可选阶段。 SpaceTug 可以将计划中的 Gateway 组件(包括动力和推进元件 (PPE) 和居住和后勤前哨 (HALO))运送到 LLFPO。FLARE 提供了一种将前体设备运送到月球表面以增强和延长载人任务的选项。借助这些组件(包括充气居住舱和气闸舱、个人机组人员机动车、现场资源利用 (ISRU) 演示以及科学和技术实验),机组人员可以在月球表面探索和进行科学研究长达 14 天。