在这里,我们开发了一个基于斑块的登革热空间传播数学模型,并将其与新加坡的时空数据集进行拟合。该模型的模拟表明,CATI 策略可能有效,特别是在人口密度较低的地区使用时。为了最大限度地提高效果,应该优先考虑增加指示病例周围的半径,即使这会导致干预措施的应用延迟。部分原因是较大的干预半径可确保个人定期接受多轮药物给药或媒介控制,从而提高总体覆盖率。在同等功效的情况下,使用预防药物的 CATI 预计比杀灭成蚊媒介控制方法更有效,如果迅速部署,甚至可能阻断个别传播链。如果基线传播增加或病例检测率下降,CATI 策略会很快失效。
展示与公共街的Alley连接,喊出街道的名称和通行权宽度。提供小巷车道进近宽度,半径和路面类型。召集拟议的小巷车道方法的边缘之间的距离,以最接近物业线。如果巷道车道进路半径正在侵占,则没有提供侵占地段的反对信。如果需要涵洞(在开放式沟渠中),请呼叫涵洞长度,类型和直径。将涵洞的长度与车道宽度相匹配,并在涵洞的入口和出口上安装头壁。显示人行道(现有或建议的)以及所有现有的条件权条件(动力极,盖伊电线,入口,消防栓,交通标志等)
摘要:弹塑性分析是获取围岩力学特性的重要方法,但选择合理的分析方法却是一个难题。为探究围岩本构关系与屈服准则分析方法之间的差异,采用双线性本构关系与统一强度准则分析方法,对淮南煤业集团谢义矿王峰岗井−817 m 灭火材料仓处巷道围岩应力分布与变形特征进行分析,对比2种分析方法的计算结果,探讨原岩应力与支护阻力作用下巷道围岩塑性区半径与位移的演化规律。结果表明:与统一强度准则分析法相比,双线性本构关系分析法避免了中间主应力系数对结果的影响,切向应力分布曲线平滑。计算得到的隧道塑性区半径和周边位移分别为 4 365 m 和 87 373 mm,均大于统一强度准则分析方法的计算值。应力差是影响隧道围岩力学特性的主要因素,当应力差由 20.4 MPa 减小到 16.4 MPa 时,隧道塑性区半径和周边位移分别减小了 0.697 m 和 26.73 mm。研究为隧道围岩弹塑性分析方法的实际选择提供了理论参考。 关键词:双线性本构关系;弹塑性分析方法;应力差;隧道围岩;统一强度准则 1 引言
符号 d tgt 到目标的欧几里德距离(斜距) DC 飞机与图像中心之间的地面半径 DX Y 轴截距与目标之间的地面距离 DY 飞机与 Y 轴截距之间的地面半径 DT 飞机与目标之间的地面半径 F b 机身框架连接到飞机 F c 相机框架连接到相机 F 中心 向心力 F n 北/东/下框架(惯性) g 地球重力加速度 h AGL 目标上方高度(地面以上) h des 所需轨道高度 KD φ 滚转内环微分增益 KD θ 俯仰内环微分增益 KD 外环微分增益 KI h 高度保持积分增益 KP h 高度保持比例增益 KP 外环外环控制器比例增益 KP ˙ ψ 转弯协调器比例增益 KP φ 滚转内环比例增益 KP θ 俯仰内环比例增益 LC 飞机与图像中心之间的斜距 LY 飞机与 Y 轴截距之间的斜距 LT飞机与目标之间的斜距 m 飞机质量 PE 位置向东 PN 位置向北 p 飞机倾斜率 q 飞机俯仰率 r 飞机航向(偏航)率 R 实际轨道半径 ˙ R 实际半径率 R des 所需轨道半径 S x 相机水平分辨率 S y 相机垂直分辨率 t 时间 VA 飞机空速 V CM / e 飞机相对于惯性系的速度 VW / e 风相对于惯性系的速度 V tgt / e 目标相对于惯性系的速度 W 飞机重量 X tgt 目标的 X 坐标 Y tgt 目标的 Y 坐标
摘要 - 使用BRUS方程研究了限制方程中PBSE,PBS和PBTE半导体的光学性质。结果表明QD表现出尺寸依赖性的光学行为,因此,由于量子限制,QDS表现出可调的带隙和发射波长。随着QD尺寸的减小,所有三种材料的吸收边缘和发射峰均为蓝色。发现PBSE QD即使在较大尺寸的情况下也会显示出明显的量子限制。由于其相对较大的激子BOHR半径(〜46 nm),随着尺寸从10 nm降低到2 nm,频带gap从0.27 eV增加到1 eV,将吸收和排放转移到近红外(NIR)中,导致应用于NIR PhotodeTectors,太阳能电池,太阳能电池,太阳能电池,杂音,并将其应用于。此外,与PBSE相比,PBS QDS在较小的激子BOHR半径(〜20 nm)上显示出较小的量子限制效应。随着尺寸从10 nm降低到2 nm,带隙从0.41 eV增加到1.5 eV,将吸收和发射从NIR转移到可见范围。这是在太阳能电池中使用的,NIR光电探测器和LED可见。此外,PBTE QD还显示出明显的量子限制效应,因为它们相对较大的激子BOHR半径(〜46 nm)。随着尺寸从10 nm降低到2 nm,带隙从0.32 eV增加到约1 eV,将吸收和发射转移到NIR和中红外(miR)区域,使其成为红外探测器,热电和miR应用的出色材料。在研究的半导体材料中,PBS QD通常显示出带隙的最大增加,尺寸降低,使其适合需要更大的带隙可调性的应用,其次是PBSE和PBTE。这些不同的光学特性是由于其独特的电子特性和激子BOHR半径所致。
ij ij ij XYKC = , , , , { } 轴承刚度[N/m]和等效粘性阻尼系数[Ns/m] L 轴承轴向长度[m] M , M est 测量和估计的MMFB质量[kg] M m 金属网环质量[kg] P 功率损耗[W] R 旋转轴的半径[m] R i 金属网环内半径[m] R o 金属网环外半径[m] T tf 顶部箔厚度[m] U d , U v , U f 位移[mm]、电压[V]和力[lb]的不确定性 W 轴承上的总静载荷[N] WS 施加的静载荷[N] WD 轴承组件的自重[N] ρ MM 线密度=金属网质量/(金属网体积×金属密度) υ 泊松比 ω 激励频率[Hz]
虽然人口普查区块组数据很有用,但它们的大小会根据人口密度而变化,而且它们的边界(尤其是在农村地区)通常远远超出可再生能源项目通常预期的潜在影响环境。Dominion 已将 1 英里半径作为最有可能发生任何类型的项目影响的区域的估计值,因此 Dominion 根据场地周围 1 英里半径的社区数据考虑投标。应该注意的是,筛选 1 英里区域的人口普查数据以确定 EJ 人口只是第一步。开发商应努力尽可能多地了解场地周围的社区,然后利用所有可用信息规划公众参与策略。最终,投标人需要在其提交的文件中解释项目社区外展和参与的总体方法(例如,土地所有者和其他一对一的会面、互动、信件、社区会议、公众听证会、听取的反馈、为解决问题而采取的措施、根据社区反馈采用的任何 CUP 条件等)。
例子:一名在平路上以 18 公里/小时的速度行驶的自行车手,在不减速的情况下,急转弯半径为 3 米。轮胎和道路之间的静摩擦系数为 0.1。自行车手在转弯时会滑倒吗?• 回答:在没有斜坡的道路上,单凭摩擦力就能提供所需的向心力,使自行车手在转弯时保持移动而不滑倒。如果速度太大,或者转弯太急(即半径太小),或者两者兼而有之,摩擦力不足以提供必要的向心力,自行车手就会滑倒。自行车手不滑倒的条件为:v 2 ≤ µ s R g 现在,R = 3 m,g = 9.8 ms -2 ,µ s = 0.1。也就是说,v 2 = µ s R g = 2.94 m 2 s -2 。 v = 18 km/h = 5 ms -1 ;即 v 2 = 25 m 2 s -2 。不满足条件。骑车者在骑行时会滑倒
在这里,我们开发了一个基于斑块的登革热空间传播数学模型,并将其与新加坡的时空数据集进行拟合。该模型的模拟表明,CATI 策略可能有效,特别是在人口密度较低的地区使用时。为了最大限度地提高效果,应该优先考虑增加指示病例周围的半径,即使这会导致干预措施的应用延迟。部分原因是较大的干预半径可确保个人定期接受多轮药物给药或媒介控制,从而提高总体覆盖率。在同等功效的情况下,使用预防药物的 CATI 预计比杀灭成蚊媒介控制方法更有效,如果迅速部署,甚至可能阻断个别传播链。如果基线传播增加或病例检测率下降,CATI 策略会很快失效。