膝关节半月板由纤维细胞外基质组成,该基质会承受较大的重复负荷。因此,半月板经常撕裂,而疲劳是其失效的潜在机制。本研究的目的是测量在沿主纤维方向纵向或横向施加周期性拉伸负荷时牛半月板的疲劳寿命。疲劳实验包括周期性负荷,直至发生故障或达到 20,000 次循环,负荷达到预测极限拉伸强度的 60%、70%、80% 或 90%。每组的疲劳数据都与威布尔分布拟合,以生成应力水平与失效循环次数的关系图(S-N 曲线)。结果表明,与沿主纤维方向纵向施加负荷相比,沿主纤维方向横向施加负荷会使失效应变增加两倍,蠕变增加三倍,失效循环次数增加近四倍(不显著)。 S-N 曲线在应力水平和两个载荷方向上的平均失效循环数之间具有很强的负相关性,其中横向 S-N 曲线的斜率比纵向 S-N 曲线低 11%(纵向:S=108 – 5.9ln(N);横向:S=112 – 5.2ln(N))。总之,这些结果表明非纤维基质比胶原纤维更耐疲劳失效。本研究的结果与了解无创伤性径向和水平肌筋膜炎的病因有关
半月板对于膝盖关节功能至关重要,半月板的眼泪是常见的伤害,尤其是在运动活动中。富含血小板的血浆(PRP)可以增强愈合性,它已成为半月板损伤的有前途的添加剂治疗,利用血小板的再生特性和生长因子的再生特性,以改善临床结果。在不到一年的随访期的研究中,使用富含血小板的血浆(PRP)治疗进行半月板损伤显示出膝关节症状和日常活动的显着改善。患者在减轻疼痛和运动活动增加方面的结局增强了,MRI扫描表明六个月后的弯弯状态稳定。随访超过一年的研究并未发现用PRP治疗的组和未用PRP治疗的组在各种结局指标(包括疼痛和膝关节功能)方面存在显着差异。半月板的血管化对于其适当的功能至关重要,血液供应不足会影响半月板损伤的愈合。PRP疗法用于通过引入生长因子和抗炎药来增强半月板愈合。PRP疗法可以使运动员的半月板眼泪更快地恢复运动,并且康复时间较少。虽然PRP似乎有望成为治疗失败或短期治疗的辅助手段的一种替代方法,但其长期有效性仍然尚无定论。患者偏好,对治疗康复的承诺以及成本都应单独考虑。
披露:作者对于本研究没有任何需要披露的信息。简介:半月板对于膝关节的负荷分布、减震和稳定性至关重要。半月板损伤会导致疼痛、活动受限和易患骨关节炎。虽然传统治疗方法不能恢复半月板功能,但生物制造有望生成具有仿生血管化和非血管化区域的半月板结构 1 。然而,这种模拟通常是通过软水凝胶或厚的应力屏蔽纤维实现的。熔融电写 (MEW) 通常用于为具有 µ m 级纤维的水凝胶提供长期机械稳定性 2 。熔融电纤颤 (MF) 使用类似原理,但通过使用牺牲材料,可以实现纳米级纤维 3 。本研究旨在通过融合 MEW 和 MF 来制造区域性半月板结构。 MEW 提供直接的机械稳定性,而 MF 引导胶原蛋白排列以刺激结构 ECM 元素的沉积,从而实现长期的机械稳定性。方法:使用 MEW(聚己内酯 (PCL))和 MF(PCL/PVAc,比例 = 20:1(MEW:MF))打印菱形(15、30、60 °)和盒子状结构(300 x 300 µm)。通过乙醇/PBS 洗涤溶解 PVAc,并在支架上接种人源半月板祖细胞(hMPC,密度 = 5*10 6 细胞/毫升)。进行压缩和拉伸测试(动态机械分析仪,TA Q800)。用免疫荧光可视化细胞(Dapi、肌动蛋白)和 I 型胶原蛋白引导。为了将脉管系统纳入外部区域,将血管和血管周围细胞(HUVEC:2.5*10 6 细胞/ml 和 MSC:5*10 6 细胞/ml)接种到支架的外部区域。)通过免疫荧光(CD-31 和 a-SMA)研究血管网络的形成。结果部分:MF 纤维引导 MPC(肌动蛋白 +)和 I 型胶原蛋白沉积,而 MPC 聚集在 MEW 微纤维上,I 型胶原蛋白主要沉积在这些聚集体周围(图 1A)。此外,与 MEW PCL 支架或非增强凝胶相比,MF-MEW 的汇聚为半月板结构提供了更高的压缩 E 模量,尤其是随着时间的推移(图 1B)。评估血管分区显示所有结构的总血管长度保持不变,并且与非增强凝胶相比更大(图 1C)。讨论:本研究强调了 MEW 和 MF 融合以引导细胞和 ECM 引导的潜力。MEW/MF 胶原引导可能归因于随着时间的推移更好的基质弹性。此外,本研究展示了生物打印机械能力和半月板构造的第一步,其中包括仿生血管和无血管区。意义/临床意义:这些发现与生成高度多孔但机械稳定的半月板植入物有关,这些植入物可实现胶原对齐,从而实现潜在的长期稳定机械性能。此外,这些结构可用于包括半月板血管和非血管成分的体外研究,以进一步获得半月板再生的基础知识,最终改善患者护理。参考文献:
08:45-08:55 单独接受胫骨高位截骨术或联合半月板异体移植治疗的骨关节炎患者的生物力学和生物学变化 (Claudio Belvedere)
要在其中采取的解决方案。2。使用前将移液器和鼻孔冲洗。3。铜管钾的颜色是深色的,因此请务必阅读上半月板。4。使用稀硫酸来酸化高锰酸钾。5。一旦达到终点,就可以准确地读取,并且不要与平均读数一起使用。6。在服用尺寸的读数时,请使用反paraLlex卡或自动释放卡。7。请勿使用橡胶软木塞,因为它可以被KMNO4攻击。8。未知解决方案的强度应仅在两个小数点至小数位。
摘要本研究旨在提出从猪半月板中提取DECM的易于扩展,具有成本效益的过程,该过程致力于生物互联制剂和3D生物打印。由于其软骨(例如结构和机械鲁棒性),弯月面是一种非常苛刻的组织,用于提取和脱落ECM。它的处理构成了很大的困难,并使以前针对软组织开发的方法无用。结合了均质化,水解,超临界二氧化碳(SCCO2)提取和冻干的过程,以应对这一挑战。该方案允许保留其天然化合物和生物相容性,同时提供良好的可打印性,并为细胞增殖和分化为半月板样表型提供刺激性环境。此外,此过程在经济和生态上很友好,因为它不需要使用大量溶剂,洗涤剂或昂贵的酶(DNase)。已经对脱细胞过程进行了精心研究,证明了DNA含量的大幅降低,但仍超过公认的阈值。这项研究进一步探讨了DECM的生物相容性,表明在扩展体外培养过程中,残留的DNA对细胞存活没有不利影响,表明出色的生物相容性。这些发现仅基于DNA含量,挑战了当前对脱细胞化有效性的定义,提出了对生物学作用的更广泛评估。
骨关节炎(osteoarthritis, OA)是一种常见于老年人和接受过半月板手术患者的退行性关节疾病,给全球大量患者带来巨大的痛苦。OA的主要病理特征之一是关节软骨的退行性改变。间充质基质细胞(MSCs)可分化为软骨细胞并促进软骨再生,在骨关节炎的治疗中具有巨大的潜力。但提高关节腔内MSCs的治疗效果仍是一个悬而未决的问题。近年来,由不同生物材料制成的水凝胶被公认为MSCs的理想载体。本文重点介绍水凝胶的力学性能对MSCs治疗OA效果的影响,并将人工材料与关节软骨进行了比较,旨在为进一步研发改性水凝胶以提高MSCs的治疗效果提供参考。
结果:在接受 USg-AMJL 注射前一年内,51.3%(39/76 个膝盖)的患者尝试过膝上外侧注射,但症状没有缓解。在 USg-AMJL 注射后,98.7%(75/76)的患者立即出现症状缓解。平均在注射后 11 周进行随访,92.3%(60/65 名患者)的患者有积极反应。与有反应组相比,无反应组的平均年龄明显较大(P = 0.009),平均体重指数较低(P = 0.007),并且根据 Charlson 合并症指数测量的患病率较高(P = 0.044)。一名患者报告在注射后一周内出现类固醇爆发。对于这些患者来说,导致内侧膝疼痛的最常见诊断是骨关节炎、内侧半月板损伤、晶体性关节病和内侧副韧带损伤,这些都得到了临床超声检查结果的支持。
i)用给定的酸溶液冲洗干净的鼻腔ii)夹具倾斜架上的尺寸。使用漏斗用酸溶液填充尺寸。将酸溶液倒入Reniscus水平后必须去除此漏斗。iii)避免在底片内的溶液中避免用碱或基本溶液冲洗干净的2ocm³或25厘米的移液器,给定v)液化剂20厘米或25厘米的碱或底座或底座成一个干净的缝隙瓶。应在半月板一级准确阅读移液器。vi)切勿用要放置的溶液冲洗锥形瓶。锥形瓶应干净,但不一定干燥。vii)将2或3滴指示剂加到圆锥瓶中的底座或碱。viii)从滴定表上的弯月板级别写下最初的质量质量读数。必须通过将酸溶液逐渐从瓶中运行到烧瓶中的碱溶液,并在添加酸时轻轻摇动烧瓶,从而将读数至少放在十进制IX)滤液中。x)立即停止滴定,烧瓶中溶液的颜色发生了变化。这称为终点。xi)重复滴定3 0R 4次,并根据结果计算平均过滤器值。读数的差异和平均滤波器值不得超过±0.2。指示器在滴定过程中使用染料,以指示其颜色的变化,当达到终点时。指示剂通常是有机酸或碱,它们在溶液中稍微电离以产生确定颜色是否变化的离子。
聚合物通过原子上薄的前体膜进行高表面能的湿纳米孔,然后毛细血管填充较慢。我们在这里使用基于膜的芯片介绍了光干扰光谱,该芯片使我们能够观察到这些现象的原位动力学,以至于以毫秒为单位的时间分辨率,以至于亚纳米计尺度。该设备由带有积分光子晶体的介孔硅膜(平均孔径6 nm)组成,该薄膜允许同时测量薄膜干扰的相位移位以及在吸收时光子晶体的共振。对于苯乙烯二聚体,我们找到了一个没有前体膜的扁平液体,而五聚体则形成了在毛细管填充的半月板前移动的扩展的分子薄膜。与五聚体的吸入动力学相比,这些不同的行为归因于孔隙表面扩散的速度明显更快,反之亦然。此外,两种低聚物都表现出异常的缓慢吸收动力学,这可以分别通过散装值的明显粘度和11倍来解释。然而,通过一个收缩模型来实现对动力学的更一致的描述,该模型强调了孔半径中局部起伏的重要性,其分子尺寸的重要性不断增加,并且包括孔隙壁上的亚纳米水动力死亡,固定区,但否则使用散装流体参数。总体而言,我们的研究表明,使用介孔培养基的干涉,光富集实验可以对聚合物液体的纳米 - 雷学进行详细的探索。