Abstract Background The uncultured adipose-derived stromal vascular fraction (SVF), consisting of adipose-derived stromal cells (ADSCs), M2 macrophages (M2Φ) and others, has shown therapeutic potential against osteoarthritis (OA), how- ever, the mechanisms underlying its therapeutic effects remain unclear.因此,本研究研究了SVF对人类免疫性大鼠异种移植模型中OA的影响。方法通过破坏内侧半月板的稳定,在女性免疫缺陷大鼠的膝盖中诱导了OA模型。手术后,将人类SVF(1×10 5),ADSC(1×10 4)或磷酸盐缓冲盐水作为控制组被移植到膝盖中。在术后4周和8周时,通过宏观和组织学分析分析了OA的进展和滑膜炎,并评估了胶原蛋白II,SOX9,MMP-13,ADAMTS-5,F4/80,CD86(M1)(M1),CD163(M2),CD163(M2)和人类核抗原(HNA)的表达。在体外,进行流式细胞术,以从SVF中收集CD163阳性细胞为M2φ。软骨细胞颗粒(1×10 5)与SVF(1×10 5),M2φ(1×10 4)和ADSC(1×10 4)或单独作为对照组共共培养,并比较了颗粒大小。TGF-β,IL-10和MMP-13浓度。与对照组和ADSC组相比,SVF组显示出明显较慢的OA前体和较小的滑膜炎,并且胶原II和SOX9的表达较高,MMP-13和ADAMTS-5的表达较低,以及较低的F4/80和M1/M2比率。只有SVF组显示大鼠滑膜中HNA,CD163-和F4/80阳性细胞的部分表达。在体外,SVF,M2φ,ADSC和对照组以该顺序显示出较大的颗粒大小,TGF-β和IL-10较高,MMP-13浓度较低。
其机械性能与关节软骨的变形伴随,从而增加了刚度和弹性行为的丧失(2)。此外,它不仅以软骨损失,还取决于纤维化,滑膜增生,软骨下骨重塑和半月板变性(3)。此外,炎性脂肪垫表现出增加的纤维化,血管过度和增强的淋巴细胞(4)。非甾体抗炎药(NSAIDS)目前是OA持续性疼痛或中度或严重疼痛的患者的主要治疗选择(5),但是这些药物与胃肠道出血和心血管造成的几种不良事件(AES)有关。此外,NSAIDS很少对晚期OA患者获得令人满意的治疗作用。此外,没有批准的药理学干预措施,生物疗法或防止OA病理发展的程序。总关节置换(TJR)可以成功缓解疼痛并改善功能,但伴随着诸如血栓形成和感染之类的很大风险(6)。此外,TJR可以导致昂贵的医院护理,物理治疗和康复;因此,这始终是OA治疗的最后手段(7,8)。在过去十年中,细胞疗法,尤其是间质干细胞(MSC)的疗法,逐渐吸引了越来越多的注意力。MSC是多能干细胞,可以分化为多个谱系,包括间充质和非杂质谱系。此外,MSC在OA中改善了软骨再生(13)。MSC主要源自骨髓(BM)(9),脂肪组织(AD)(10)和脐带(UC)血液(11)。许多临床前研究表明,这些化合物的抗炎性和抗凋亡作用(12)。近年来,一些临床研究评估了OA治疗中的MSC。这些研究表明,MSC可以减轻疼痛,改善功能并促进软骨修复(14,15)。然而,文献中已经报道了各种矛盾的临床结果。例如,一项研究表明,在关节内注射4种不同浓度的同种异体BM-MSC之后,与安慰剂相比,膝关节功能评分或成像结果没有显着改善(16)。一些最近的系统评价或荟萃分析获得了相似的结果(17,18),但一些荟萃分析表明,与安慰剂相比,MSC没有任何优势(19-21)。此外,对MSC的研究也受到了严重的批评。基于MSC的几项临床试验在主要终点上失败了,导致许多人质疑是否应继续研究这些干细胞(22)。尽管如此,在2023年(23 - 25)中报道了许多评估MSC治疗作用的新研究。因此,本综述总结并更新了有关使用MSC治疗OA的研究结果。此外,还进行了荟萃分析,以进一步评估MSC治疗OA的效率。
肌肉骨骼疾病骨关节炎(OA)是全球老年人慢性疼痛和残疾的主要原因。oa可以在所有滑膜中找到,但在膝盖和臀部等重量关节中更为明显。膝关节中的病理变化不限于关节软骨,因为OA会影响整个关节,因此滑膜倾斜,骨肥大的形成,软骨下骨硬化和退化的韧带是OA的进一步标志(1,2)。OA的病因被认为是与全身和局部因素相互作用的多因素(例如,衰老,女性性别,遗传倾向和超重)(3)。局部危险因素还包括前创伤性损伤,例如半月板或韧带,关节内骨折和软骨病变(4)。数十年来,已经研究了原发性OA和创伤后OA(PTOA)的病原机制,但是,当前可用的治疗方法都无法可靠地防止OA进展(5,6)。先前的研究表明,补体系统和细胞衰老都参与OA发病机理和特异性靶向可能是OA治疗的未来方法。补体系统是先天免疫系统的重要组成部分,以前的研究表明,在OA和PTOA进展过程中,它至关重要(7-11)。与健康个体相比,在来自OA患者和急性膝盖损伤后的滑动流体中发现了包括C3A,C5B-9,C4D和C3BBBP在内的补体激活产物水平升高(12,13)。除了软骨细胞和滑膜细胞的局部表达外(10)外,由于膝关节损伤引起的出血(11),也可能受到关节内补体成分的水平。在OA进展过程中的补体激活被认为可以通过各种微环境变化(例如,增强的蛋白酶活性和ROS的积累)以及与损伤相关的分子模式(DAMP)促进。 后者包括在坏死细胞死亡和软骨降解期间释放的细胞和基质衍生的成分(例如,II型胶原蛋白的分解产物)(2,10,14,15)。 补体系统的激活以级联的方式发生,导致过敏毒素C3a和C5a的产生以及末端补体复合物的形成(TCC;也称为C5B-9)。在OA进展过程中的补体激活被认为可以通过各种微环境变化(例如,增强的蛋白酶活性和ROS的积累)以及与损伤相关的分子模式(DAMP)促进。后者包括在坏死细胞死亡和软骨降解期间释放的细胞和基质衍生的成分(例如,II型胶原蛋白的分解产物)(2,10,14,15)。补体系统的激活以级联的方式发生,导致过敏毒素C3a和C5a的产生以及末端补体复合物的形成(TCC;也称为C5B-9)。
ssouth@uoregon.edu 披露:Sanique South (N)、Yan Carlos Pacheco (N)、Levi Wood (N)、Nicholas Hannebut (N)、Cindy Brawner (N)、Matlock Jeffries (N)、Nick Willett (N) 简介:全球有数百万人患有创伤后骨关节炎 (PTOA),它是美国导致残疾的主要原因之一。此外,目前尚无已知的治愈方法或疾病改良疗法来阻止 PTOA 进展。细胞疗法在临床前研究中通常显示出巨大的潜力;然而,临床试验显示结果差异很大。这种差异被认为部分来自供体之间细胞效力的高度异质性以及宿主环境的多变性。了解供体人类间充质细胞 (hMSCs) 的可靠性和效力是确保 PTOA 获得一致和优化的治疗结果的关键步骤。 DNA 甲基化和去甲基化在调节 MSC 再生和免疫调节中发挥作用。然而,甲基化在 MSC 调节中的确切作用,以及基线表观遗传模式是否有助于预测关键治疗特性尚不完全清楚。为了弥补这些知识空白,本研究旨在基于基线表观遗传特征和结构结果建立供体 hMSC 治疗效力的预测模型,以研究可修改的细胞靶点,确保细胞治疗获得更好且一致的治疗结果。我们假设,与预测的治疗效果较差的 hMSC 相比,预测的治疗性 hMSC 将表现出独特的表观遗传特征。方法:体外研究:从 RoosterBio 和 Lonza 购买骨髓衍生的 hMSC。将来自 12 位供体的 hMSC 培养 24 小时(RoosterNourish TM -MSC 培养基,RoosterBio;MSCGM™ 间充质干细胞生长培养基,Lonza)。收获细胞并使用 Qiagen DNEasy 试剂盒提取 DNA。DNA 经过亚硫酸盐转化(每个样本 500ng,Zymo EZ DNA 甲基化试剂盒),然后加载到 Illumina Infinium HumanMethylation EPIC 阵列上,该阵列可以量化整个基因组中的 >850,000 个 CpG 位点,包括外显子、内含子和基因间区域。使用 R(v. 4.4.0)进行统计分析。使用 ChAMP 包(v.3.14)加载和处理原始 .IDAT 文件。首先加载原始阵列数据,并将 CpG 位点甲基化数据转换为 beta 值(0-1 甲基化值估计值表示给定 CpG 位点甲基化与未甲基化探针强度之比)。然后使用默认选项的 champ.norm 函数使用 beta 混合分位数归一化程序对 beta 值进行归一化。排除以下情况:(1)检测 P ≥0.01 的探针、针对非 CpG 位点的探针、位于性染色体上的探针,以及在CpG 探针 3' 端 5bp 范围内具有已知单核苷酸多态性的探针,其次要等位基因频率≥1% [1] (N=158,841)。对于模型开发,使用具有自动特征选择的 glmnet 包 (v. 2.0-16) 开发了弹性网络正则化广义逻辑模型。通过 3 倍内部交叉验证调整模型,并记录性能特征。由于发现几个 CpG 位点是再生能力的完美预测因子,我们随后执行了逐步减少数据集的方法,其中,在每一轮开发之后,从数据集中删除最终模型中包含的特征并重新进行开发,总共 50 轮开发周期。所有 50 轮中的所有模型都表现完美(AUC=1.0),可能是因为样本量相对较小而过度拟合。使用在 MATLAB(Mathworks)中生成的 PLSDA 和 PLSR 模型来识别治疗性 hMSC,并使用分泌的细胞因子水平读数作为独立变量,以不同的 hMSC 供体/治疗作为二元结果变量,对来自初始体外研究的 z 分数数据进行训练。使用已建立的内侧半月板横断面 (MMT) 临床前大鼠模型,在 PTOA 的体内临床前模型中验证了预测的治疗性 hMSC(图 1A)。结果:初步研究的数据用于训练 PLSR 预测统计模型。预测模型预测前瞻性地揭示了沿 LV 轴 1 分离的大约六个供体的 hMSC,预测与治疗效果相关,从而预测治疗效果较差和治疗效果较强的供体;因此,6 个样本被指定为可能的“反应者”,6 个被指定为可能的“无反应者”(图 1B)。在甲基化分析中,我们发现在 50 轮开发周期中选定了 119 个 CpG 位点。所有位点均存在显著差异甲基化(P 值 7.5E-8 至 4.1E-4)。与无反应者相比,应答者中大约一半的 CpG 为高甲基化(n=45),其余为低甲基化(n=43)。应答者与无反应者之间平均甲基化值差异最大(Δβ 最高)的 CpG 位点包括 cg14705220(Δβ=0.25 应答者-无反应者 [应答者高甲基化],P =4E-4)和 cg09382002(Δβ=-0.23,P =3E-4 [应答者低甲基化]),图 2。然后,我们对与这些差异甲基化位置相关的基因进行了通路分析。 119 个 CpG 定位到 88 个已知基因。这些基因在 T 细胞信号转导(IL-7 信号转导通路,P =2.27E-3)、吞噬细胞:NK 细胞相互作用(IL-15 产生,P =8.13E-3)和 B 细胞信号转导(April 介导信号转导 P =8.69E-3、B 细胞活化因子信号转导 P =9.09E-3)中的重要通路中富集。有趣的是,差异甲基化基因组位置中富集程度最高的基因网络集中在几个已知的 OA 效应物周围,包括 NFkB 复合物、组蛋白去乙酰化酶 (HDAC) 和机械感受器 (TRPV1) 等 (图 3)。讨论:甲基化数据结果支持了我们的假设,即预测的治疗性 hMSC 将表现出独特的表观遗传特征。我们的数据表明,基于来自 hMSC 的混合细胞 DNA 甲基化数据的模型可以很容易地区分可提供治疗益处的细胞产品和不会提供治疗益处的细胞产品。这些差异甲基化模式中涉及的基因在先前在 OA 中描述的途径中富集。意义/临床意义:DNA 甲基化分析可能有助于在膝关节 OA 关节内注射前筛选 hMSC 供体,以最大限度地提高临床益处。此外,进一步研究我们发现的驱动表观遗传差异的个体细胞亚群可能会揭示出可用于开发未来膝关节 OA 疗法的新途径。致谢:本研究得到了俄勒冈州吴仔人类表现联盟的支持。