摘要 高维希尔伯特空间以及控制光子多个自由度并使其纠缠的能力使得各种量子信息处理应用能够实现新的量子协议。在这里,我们提出了一种方案,使用在路径(位置)空间和频域中实现偏振控制量子行走所需的操作元件来生成和控制偏振-路径-频率纠缠。超纠缠态表现为使用干涉装置的受控动力学,其中半波片、分束器和频率移位器(例如基于电光效应的移位器)分别用于操纵偏振、路径和频率自由度。重点是利用偏振来影响频率和位置空间中特定值的移动。计算子空间之间的负性以证明三个自由度之间纠缠的可控性,并使用去偏振通道模拟噪声对纠缠的影响。报告的进展以及使用光量子态实现量子行走的实验演示使量子行走成为一种生成超纠缠态的实用方法。
组件详细信息 数量 样品来源(CDN,截至 2024 年 11 月) 激光源 520nm 绿色激光二极管(II 类激光) 1 DigiKey VLM-520-03LPT-ND 激光电源 6V 电池(4 节 AA 电池,带电池座) 1 DigiKey 1528-830-ND 开关按钮 带 Off-Mom 功能的按钮 1 DigiKey PR144C1900 Gator-Clip 引线 3-7 DigiKey 2407(10 件装) 太阳能电池板 非晶太阳能电池,0-5V,20.7 uW 2 DigiKey AM-1819CA 分束器 50/50 分束器,非偏振 1 ThorLabs EBS1 半波片 λ /2 薄膜,适用于 520nm 光,21 毫米见方 2 Edmund Optics 88256(片) 四分之一波片 λ /4 520nm 光的薄膜,21 毫米见方 1 Edmund Optics 88253(片) 偏振器 最好使用厚材料,21 毫米见方 3 PolarizationDotCom PF030(片) 绿色滤光片 铬绿色滤光片,21 毫米见方 2 生产用品 R389(片) 参考偏振器 偏振滑块,任何有标签的都可以 1-3 Rainbow Symphony 04601 面包板 小面包板 1 DigiKey BB-32650-R Arduino Uno Rev3 经过测试,请参阅固件安装提示 1 DigiKey A000066 USB 线 USB-B 转 USB-A,公对公 1 DigiKey SC-2ABE003F 9V 交流适配器或电池插头
在量子信息处理与计算中,凸结构在量子态、量子测量和量子信道的集合中起着重要作用。一个典型的凸结构问题是量子态鉴别,它从一组给定的量子态 {| Ψ i ⟩} ni =1 中区分出一个量子态,其中先验概率 pi 满足 P nipi = 1,参见[1–4]。最近,[5–8] 考虑了不可用量子态到可用状态集合的最佳近似问题。对于给定状态 ρ,问题改写为从 {| Ψ i ⟩} ni =1 中寻找最难区分的状态,使得 ρ 与凸集 P nipi | Ψ i ⟩⟨ Ψ i | 之间的距离最小[7],该问题的解决有利于可用量子资源的选择[9–11]。与量子相干性和量子纠缠中距离测度的选择类似,我们在这里采用迹范数作为距离测度[12–18]。一个重要的问题是如何选择基{| Ψ i ⟩} ni =1。在量子信息处理中,人们一般关注逻辑门在制备量子态时的可用性。从资源论的角度看,所谓可用态通常意味着它们可以很容易地制备和操纵。在光学实验中,倾斜放置的偏振器将输入光子态转换为真实量子逻辑门的本征态。如果半波片与水平轴以π/ 8倾斜放置,则构成阿达玛门[19, 20]。因此,无论从实验可用性还是态制备的可行性角度,将真实量子逻辑门的本征态视为可用基都是有意义的。给出的不确定关系