31010半空腔室0.125 cm 3提供了合理空间分辨率的小尺寸之间的良好级别,并具有较大的敏感体积,以进行准确的剂量测量。0.125 cm 3的腔室体积提供了足够的信号,用于高精度参考剂量测量。敏感体积几乎是球形的,导致沿水幻影的所有三个轴沿所有三个轴的均匀的角度响应和均匀的空间分辨率。
在本文中,我们研究了非交互性局部差异隐私模型(NLDP)中PAC学习半空间的问题。为了违反指数样本复杂性的障碍,先前的结果研究了一个轻松的设置,在该设置中,服务器可以访问一些其他公共但未标记的数据。我们继续朝这个方向朝着这个方向前进。特别是,我们考虑标准设置下的问题,而不是以前研究的较大的保证金设置。在对基础数据分布的不同温和假设下,我们提出了两种基于Massart噪声模型和自我监督的学习方法,并表明可以实现仅在私人和公共数据的其他术语中以其他方式线性的样品复杂性,这显着改善了先前的结果。我们的方法也可以用于其他私人PAC学习问题。1
原始研究论文摘要:通过可靠性分配来提高总可靠性已成为提高复杂工业系统设计效率的成功方法。过去的大量研究在很大程度上解决了这个问题。从迄今为止为实现目标而开发的不同技术中可以看出这一点。近年来,人们使用了元启发式算法,如模拟退火、禁忌搜索 (TS)、粒子群优化 (PSO)、布谷鸟搜索优化 (CS)、遗传算法 (GA)、灰狼优化技术 (GWO) 等。本文提出了一种实现混合 PSO-GWO 算法 (HPSOGWO) 的框架,用于解决复杂桥梁系统和太空舱生命支持系统的可靠性分配和优化问题。数值实验证明了所提框架的优势/竞争力。将 HPSOGWO 得到的结果与以前使用的 PSO 和 GWO 算法进行比较,结果表明,在一个名为复杂桥梁系统的问题中,与 PSO 和 GWO 相比,HPSOGWO 使用的函数评估次数较少。因此,HPSOGWO 获得的整体解决方案不仅与之前一些其他著名优化方法获得的结果相当,而且优于它们。
原始科学论文摘要:识别和评估对关键基础设施的任何威胁,包括历史、方法、能力和动机,对于危机管理和城市的被动防御至关重要。威胁,包括自然和非自然(人为)威胁,都是针对城市的关键资产和基础设施的。重要资产被视为有价值的组件,因此最轻微的故障或损坏都会对系统造成损害。本研究以伊朗首都德黑兰为例,识别和评估人为对城市及其重要资源的危险。这项工作创造了一种创新的综合 MCDM 方法,可以处理危机管理中的信息模糊性。因此,在识别人为威胁的这个阶段,使用了图书馆方法和专家访谈,并实施了多标准决策技术。此外,本研究受益于灰色最佳-最差方法 (BWM) 来评估研究标准,以及灰色替代方案测量和根据妥协解决方案排名 (MARCOS) 对威胁进行排名。研究结果表明,德黑兰市面临的三大主要威胁是网络、军事和恐怖袭击。最后,基于两个实际实验进行了敏感性分析,并验证了研究结果。
在各种下游应用中,稀疏正则化的优化问题无处不在,例如深层神经网络(DNNS)的特征选择和压缩。尽管如此,当将这种正则化与随机损耗函数结合使用时,文献中现有的方法并不能很好地执行。,设计具有转换保证的计算有效算法并可以计算组较高的解决方案是一项挑战。最近,提出了一种半空间的预测梯度(HSPG)方法,部分解决了这些挑战。本文介绍了我们称之为ADAHSPG+的HSPG的大大增强版本,这取得了两个明显的进步。首先,与HSPG所要求的假设相比,ADAHSPG+在明显较宽的假设下具有更强的收敛结果。通过将差异技术与新的自适应策略整合在一起,以迭代预测解决方案的支持来实现这种改善。第二,与HSPG相比,ADAHSPG+的参数调整要少得多,从而使其更实用和用户友好。通过设计自动和自适应策略来选择每次迭代中采用的步骤类型并更新关键的HyperParam-eters来实现这一进步。我们提出的ADAHSPG+算法的数值有效性在凸面和非凸基准问题上都证明了。源代码可在https://github.com/tianyic/adahspg上找到。
摘要:过去二十年,飞机作为交通工具的使用趋势日益增长。然而,由于飞行员数量不足,航线不足。因此,飞机使用量的增加受到限制。为了应对土耳其的这种增长,飞行学院的数量有所增加。飞行学院已成为强大而昂贵的飞行训练平台。在新的全球经济中,飞机选择问题已成为计划在公立大学开设的飞行训练部门的核心问题。在本研究中,提出了一种基于模糊 BWM 方法的方法来选择公立大学中更合适的训练飞机。使用模糊 BWM 方法确定标准权重和备选飞机排名。之后,开发了一个数学模型来计算在某些约束条件下我们需要购买多少架飞机。Necmettin Erbakan 大学想要培养新的合格飞行员,需要训练飞机和可以提供飞行员培训的教练机。针对涅米丁·埃尔巴坎大学飞行训练系进行了训练机选择案例研究。结果显示,飞行训练系有 13 架飞机就足以开展教育。
摘要量化强烈浊度介质的光学性质(即吸收和散射)的能力对生物组织,流体场和许多其他许多人的表征具有重大意义。但是,很少有方法可以提供光学特性的广泛量化,并且没有一个能够具有高速(例如Kilohertz)功能的定量光学性质成像。在这里,我们开发了一种新的成像模式,称为半半空间频域成像(半数sfdi),它比最先进的大约两个数量级,并为kilohertz高速,无标签,无标签,非贴标,广泛的,广泛的,宽范围的量化量化。此方法利用半二元图案的照明来靶向浊度介质的空间频率响应,然后使用基于模型的分析将其映射到光学性质。我们在具有广泛的光学特性和体内人体组织的一系列幻象上验证半径-SFDI。我们通过体内大鼠脑皮层成像研究进行了证明,并证明半fdi-sfdi可以纵向监测组织中功能性发色团的绝对浓度以及空间分布。我们还表明,半fdi可以在kilohertz速度下空间绘制高度动态流量的双波长光学性能。一起,这些结果突出了半fdi-sfdi在包括脑科学和流体动力学在内的基础研究和翻译研究中实现新能力的潜力。
基于弹性半空间理论的功率模块分布式压装均衡封装技术 常瑶,李成敏,IEEE 学生会员,罗浩泽,IEEE 会员,李武华,IEEE 会员,Francesco Iannuzzo,IEEE 高级会员,何翔宁,IEEE 研究员 摘要 – 本文研究了分布式压装(DPP)封装技术,以实现芯片的均衡热应力。在现有的集中压装(LPP)方式下,芯片上的机械应力分布本质上是不均匀的,并且与热应力分布相耦合,可以用弹性半空间理论模型来描述。通过分散集中压装载荷并均匀定位载荷,制定了夹紧阵列矩阵,并比较了不同夹紧方式下的机械应力分布。然后,选择了一种满足均衡应力分布和封装成本之间权衡的 3*3 夹紧方法。同时将汇流排与散热器集成在一起,提高功率模块的功率密度。最后,实现了DPP原型机,通过改变芯片周围的压力并对其进行加热,比较了原型机内部并联芯片之间的热分布,验证了所提出的基于弹性半空间理论的DPP封装技术对热应力平衡的影响。1