近年来,对消费者对自然行动的渴望减少环境足迹的渴望,对基于植物的产品的需求出现了。植物蛋白酶在分解Pro Teins和在所有生物体中产生氨基酸的作用中起着至关重要的作用,在这个市场中已成为幼体蛋白酶在营养型领域中最常使用的植物蛋白酶。尽管这些酶广泛流行,但在市场上可用的商业蛋白水解产品的控制和分析中存在显着差距,尤其是关于它们的表征和定量。本评论文章通过检查来源,催化性能,生产过程和可分析它们的技术来解决这一关键点,从而为行业中提供了新的可能性。此外,我们将探讨其中一些酶的特征以及影响半胱氨酸蛋白酶制剂作为人消化辅助物的有效性的关键因素。最后,我们将讨论未来的观点,并建议采取行动,以继续进入植物性蛋白酶在食品补充剂和消化辅助工具中的工业应用。
荧光滴定表明,人类低分子量激肽原 (LK) 能以高亲和力结合两分子的蛋白酶 L 和 S 以及木瓜蛋白酶。相比之下,第二分子的蛋白酶 H 的结合要弱得多。通过滴定法(监测酶活性损失和沉降速度实验)证实了 2:1 的结合化学计量。蛋白酶 L 和 S 与木瓜蛋白酶的结合动力学表明,两个蛋白酶结合位点的结合速率常数 k,,,,, = 10.7-24.5 x 106 M" sI 和 k,,,,, = 0.83-1.4 x 106 M" s-'。将这些动力学常数与完整 LK 及其分离结构域的先前数据进行比较,表明结合较快的位点也是结合较紧的位点,位于结构域 3 上,而结合较慢、亲和力较低的位点位于结构域 2 上。这些结果还表明,两个结合位点之间或来自激肽原轻链的蛋白酶结合没有明显的空间障碍。
缺乏 Zn 2+ 位点,IC 50 分别为 9.35 ± 0.18 µ M 和 0.67 ± 0.09 µ M。18 有趣的是,
铅毒性与其相互作用和损害DNA的能力有关。但是,其作用的分子机制尚未完全理解。在我们实验室的体外研究表明,硝酸铅(PBNO 3)以剂量依赖性方式诱导人肝癌(HEPG 2)细胞的细胞毒性和氧化应激。在这项研究中,我们假设N-乙酰基半胱氨酸(NAC)是一种已知的抗氧化剂化合物,可针对铅诱导的与遗传毒性损伤相关的细胞死亡。为了检验该假设,将HEPG 2细胞用NAC,NAC加Plus PBNO 3或单独使用PBNO 3的生理剂量处理,然后在37 U C下在37 U C下孵育48小时。通过锥虫蓝色排除测试确定细胞活力。通过微凝胶电溶剂(彗星)测定检测到DNA损伤程度。我们的结果表明,铅暴露会诱导大量的细胞毒性以及对HEPG 2细胞的显着遗传毒性。然而,与NAC的生理剂量(500 m m)共同治疗可稍微增加细胞活力,并显着降低DNA损伤程度(p,.05)。因此,基于其清除自由基的能力,NAC治疗可能是针对铅毒性进行化学预防的有前途的治疗候选者。(Ethn dis。2010; 20 [Suppl 1]:S1-101 – S1-103)
植物半胱氨酸 - 蛋白酶(Cysprot)代表一种良好的蛋白水解酶类型,该酶履行严格调节的生理功能(衰老和种子发芽等)和防御作用。本文集中于帕帕因 - 蛋白酶蛋白酶C1a(Family C1,CA氏族)及其抑制剂植物囊蛋白(Phycys)。尤其是,审查了蛋白酶抑制剂的相互作用及其在整个植物一生中的特定途径的相互参与。c1a cysprot和phycys已被分子表征,比较序列分析已鉴定出共有的功能基序。可以在被子植物中已识别的Cysprot和Phycys数量之间建立相关性。因此,进化力可能已经确定了囊蛋白在这些物种中内源性和害虫性蛋白酶上的控制作用。用荧光蛋白标记蛋白酶和抑制剂揭示了在瞬时转化的洋葱表皮细胞中内质网网络中亚细胞定位的常见模式。通过双分子荧光互补证明了进一步的体内相互作用,这表明它们参与了相同的生理过程。
研究文章 eISSN: 2306-3599; pISSN: 2305-6622 棉花中的基本五半胱氨酸基因家族:综合基因组特征和盐胁迫响应基因表达谱分析 Laviza Tuz Zahra 1 , Fariha Qadir 1 , Abdul Hafeez 2 , Muhammad Saleem Chang 2 , Maqsood Ahmed Khaskheli 3 , Madan Lal 2,7 , Mehreen Fatima 8、Sehar Fatima 1、Ali Hamza 1、Ayesha Khalid 6、Sadia Shehzad 1、Annas Imran 1、Rida Tabbusam 1、Waseem sarwar 1、Aleena Farooq 4、Uswa Maryam 5、Muhammad Usama Javed 1、Pakeeza Aslam 1、Aliza Sarwar 1、阿里侯斯奈因·阿尔维 1、萨尔曼·阿里·苏海尔9、Ghulam Rasool 1 和 Abdul Razzaq 1* 1 拉合尔大学分子生物学与生物技术研究所,巴基斯坦 2 信德农业大学 Umerkot 分校农学系,信德省巴基斯坦 3 贵州大学农学院植物病理学系,贵州贵阳 550025,中国 4 拉合尔政府学院大学,拉合尔,巴基斯坦 5 国家生物技术和遗传工程研究所,费萨拉巴德,巴基斯坦 6 拉合尔女子大学,拉合尔,巴基斯坦 7 中国农业科学院烟草研究所,山东省青岛 266101,中国 8 联合健康科学学院; 9 拉合尔大学土木工程系,巴基斯坦 *通讯作者:biolformanite@gmail.com
1 蛋白质科学、蛋白质组学和表观遗传信号实验室(PPES)和综合个性化和精准肿瘤学网络(IPPON),安特卫普大学生物医学科学系,Campus Drie Eiken,Universiteitsplein 1,2610 Wilrijk,比利时;chandra.ace@gmail.com(CSC);claudina.pereznovo@uantwerpen.be(CP-N.);kendeclerck90@hotmail.com(KD);ajaypalagani@gmail.com(AP);xaveer.vanostade@uantwerpen.be(XVO)2 安特卫普可持续性和医学应用等离子体实验室(PLASMANT),安特卫普大学化学系,2610 Wilrijk,比利时;priyanka.shaw@uantwerpen.be(PS); annemie.bogaerts@uantwerpen.be (AB) 3 PamGene International BV, 5211 Hertogenbosch, 荷兰;srangarajan@pamgene.com 4 安特卫普生物医学信息学网络(Biomina),安特卫普大学信息学系,2610 Wilrijk,比利时;bart.cuypers@uantwerpen.be (BC);nicolas.deneuter@uantwerpen.be (NDN);kris.laukens@uantwerpen.be (KL) 5 新加坡南洋理工大学李光前医学院淋巴细胞信号研究实验室,新加坡 1308232,新加坡;fazil.turabe@gmail.com (FMHUT);nkverma@ntu.edu.sg (NKV) 6 根特大学内科系血液学系,9000 根特,比利时; fritz.offner@ugent.be 7 根特大学生物分子医学系,9000 根特,比利时;pieter.vanvlierberghe@ugent.be * 通信地址:emilie.logie@uantwerpen.be (EL);wim.vandenberghe@uantwerpen.be (WVB);电话:+32-3265-2318 (EL) † 这些作者对本文的贡献相同。
摘要:酶的共价抑制剂作为药物种子越来越受到重视,但发现非半胱氨酸靶向抑制剂仍然具有挑战性。在此,我们报告了在基于活性的 1601 个反应性小分子蛋白质组学筛选过程中的一次有趣经历,其中我们监测了库分子与半胱氨酸反应性碘乙酰胺探针竞争的能力。一种环氧分子 F8 表现出对限速糖酵解酶甘油醛-3-磷酸脱氢酶 (GAPDH) 的探针反应性的意外增强。深入的机制分析表明,F8 与活性位点的天冬氨酸形成共价加合物以取代酶的辅因子 NAD + ,同时增强了探针与催化半胱氨酸的反应。机制基础使我们能够识别优化的天冬氨酸反应性 GAPDH 抑制剂。我们的研究结果表明,利用半胱氨酸反应探针进行基于活性的蛋白质组学筛选可用于发现与非半胱氨酸残基反应的共价抑制剂。