拓扑量子材料由于其本质上具有高的电子电导率而针对缺陷或杂质的扰动而具有阳极材料的显着潜力。在这项工作中,我们利用了群 - 智能结构搜索方法和第一个原理计算的组合来预测Ben Monolayer的全球最小值,这表明它是一个有希望的Nodal-Line半线阳极,用于Li-ion电池。ben Anode的特定能力为3489 mAh/g,平均开路电压为0.15 V,导致9681 MWH/g的超高能量密度为9681 MWH/g(参考标准氢电极电势)。此能量密度代表所有二维(2D)拓扑量子阳极中最高的,并且超过了当前最著名的锂离子电池2D阳极材料。进一步,Ben单层中空缺的形成诱导了独特的“自兴趣”效应,从而促进了高电子电导率。此外,Ben单层表现出0.30 eV的扩散能屏障,用于锂离子迁移,在静电过程中的小规模面积扩张为0.96%,并且具有与接触的电解质的优秀润湿性。
沙特在世界范围内拥有糖尿病的最高患病率之一。在2021年,沙特阿拉伯估计有超过427万成年人(20-79岁)患有糖尿病,成人的患病率为18.7%,预计到2030年将达到20.4%,这是一个令人震惊的增长。2因此,沙特阿拉伯的决策者旨在减轻糖尿病和相关并发症的经济负担。3胰高血糖素样肽-1激动剂(GLP-1)为患有心血管并发症的T2D患者提供了实质性值。心血管疾病被认为是T2D患者死亡率的主要原因。 4 Semaglutide 1 mg和Dulaglutide 1.5 mg分别通过持续和倒流心血管结局试验(CVOT)建立了心血管保护。 5,6对于沙特付款人评估不同GLP-1选项的价值将有所帮助。心血管疾病被认为是T2D患者死亡率的主要原因。4 Semaglutide 1 mg和Dulaglutide 1.5 mg分别通过持续和倒流心血管结局试验(CVOT)建立了心血管保护。5,6对于沙特付款人评估不同GLP-1选项的价值将有所帮助。
词嵌入是使用计数或预测技术构建的矢量语义表示,旨在从词语共现中捕捉含义的细微差别。自从它们被引入以来,这些表示就因缺乏可解释的维度而受到批评。词嵌入的这种特性限制了我们对它们实际编码的语义特征的理解。此外,它导致了它们所用于任务的“黑箱”性质,因为词嵌入性能的原因通常对人类来说仍然是模糊的。在本文中,我们探索了词嵌入中编码的语义属性,将它们映射到可解释的向量上,由明确的和神经生物学驱动的语义特征组成(Binder 等人,2016 年)。我们的探索考虑了不同类型的嵌入,包括分解计数向量和预测模型(Skip-Gram、GloVe 等),以及最新的情境化表示(即 ELMo 和 BERT)。
词嵌入是使用计数或预测技术构建的矢量语义表示,旨在从词语共现中捕捉含义的细微差别。自从它们被引入以来,这些表示就因缺乏可解释的维度而受到批评。词嵌入的这种特性限制了我们对它们实际编码的语义特征的理解。此外,它导致了它们所用于任务的“黑箱”性质,因为词嵌入性能的原因通常对人类来说仍然是模糊的。在本文中,我们探索了词嵌入中编码的语义属性,将它们映射到可解释的向量上,由明确的和神经生物学驱动的语义特征组成(Binder 等人,2016 年)。我们的探索考虑了不同类型的嵌入,包括分解计数向量和预测模型(Skip-Gram、GloVe 等),以及最新的情境化表示(即 ELMo 和 BERT)。
摘要:命名实体识别(NER)是自然语言处理中的关键子任务。在解决NER问题时,对实体边界和实体类型有更深入的了解特别有价值。大多数以前的顺序标签模型都是特定于任务的,而近年来,由于在编码器 - 犯罪模型框架中解决NER任务的优势,因此目睹了生成模型的兴起。尽管达到了有希望的性能,但我们的试点研究表明,现有的生成模型在检测实体边界和估计实体类型方面无效。在本文中,提出了一个多个关注框架,该框架将实体类型嵌入和单词 - 单词关系的注意力引入了指定的实体识别任务。为了提高实体型映射的准确性,我们采用外部知识库来计算先前的实体类型分布,然后通过编码器的自我注意力将信息输入到模型中。为了增强上下文信息,我们将实体类型作为输入的一部分。我们的方法从实体类型的隐藏状态中获得了其他注意,并将其用于解码器中的自我和跨注意机制。我们将序列中的实体边界信息转换为单词 - 单词关系,并将相应的嵌入到交叉注意机制中。通过单词 - 单词关系信息,该方法可以学习和了解更多实体边界信息,从而提高其实体识别精度。我们在广泛的基准测试基准上进行了实验,包括四个平面和两个长实体基准。我们的方法显着改善或表现类似于最佳的生成NER模型。实验结果表明,我们的方法可以大大增强生成模型的能力。
在设计药物输送系统时,研究人员主要专注于在目标部位提供准确的药物。这样,通过使用现代纳米技术来利用许多方法,这在其方式上被证明是最好的。1纳米技术是科学的一个分支,在纳米级使用纳米材料来创建具有先进特征和改进特性的纳米工程产品,尺寸范围为1至100 nm。十亿分之一是纳米。纳米材料是物理化合物,至少在1至100 nm的范围内。2这些NP在多种不同的形状中观察到,包括聚合物纳米颗粒,硬磷脂纳米颗粒,纳米乳液,树枝状聚合物,纳米体,脂质体,脂质体,碳纳米管,胶束系统等3在这方面,纳米技术在医学领域中的使用正在通过更精确的药理药物治疗或“智能药物”过渡到“活跃结构”,或者是通过将某些配体耦合到纳米载体或适当性的“智能药物”。可以将多种药物(如抗真菌,抗病毒,抗癌,挥发性油,气体,蛋白质和肽)固定在称为纳米杂物的胶体纳米含量结构中。
每种文献的研究期间主要是在1970年代在Ishikawa县(1978)11)和1990年代的Ishikawa县进行的。
摘要 目的——随着日益复杂的人工智能的出现,服务一线的工作性质正在发生变化。下一个前沿是超越用人工智能取代常规任务和增强服务员工的能力。本文的目的是研究使用基于人工智能的情绪识别软件增强的服务员工是否在人际情绪调节 (IER) 方面更有效,以及 IER 是否以及如何影响他们自己的情感健康。 设计/方法/方法——在基础研究中,开发了一种基于人工智能的情绪识别软件,以帮助服务员工管理客户情绪。一项基于 2,459 次呼叫中心服务互动的实地研究评估了人工智能在增强服务员工 IER 方面的有效性以及对幸福感相关结果的直接下游后果。 结果——用人工智能增强服务员工的能力显著改善了他们的 IER 活动。处于人工智能 (与对照组相比) 条件下的员工在调节客户情绪方面明显更有效。反过来,IER 目标的实现又影响了员工情感健康。与接触人工智能增强相关的感知压力充当了竞争介质。实际意义——服务公司可以通过专注于其增强员工的能力而不是仅仅取代员工的能力,从最先进的人工智能技术中受益。此外,借助技术发出 IER 目标实现的信号可能会为服务员工的情感健康带来令人振奋的结果。原创性/价值——本研究是首批实证测试引入人工智能技术来增强服务员工处理客户情绪的研究之一。本文进一步补充了
3 3光电半导体元件光电子半导体设备3 3 3光电子学光电2 4光电实验技术光电子实验室光电工程概论3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3个测量系统的量度测量系统。测量系统设计半导体元件及材料特性分析3 3 3分析半导体设备和材料半导体元件物理33 3 3 3 3 3 3半导体行业和技术的特殊主题半导体磊晶技术3 3 3 3 3 3 3 3 3 3 3 3半导体制程技术半导体处理技术纳米科学和技术简介3 3 3微电子材料与制程微电源材料和加工新兴奈米电子元件与奈米光子结构33 3 3 3 3 3 3 3 3 3 3 3 3 3 3量子机制3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 quant
摘要 本文全面探讨了量子信息背景下的半正定规划 (SDP) 技术。它研究了凸优化、对偶和 SDP 公式的数学基础,为解决量子系统中的优化挑战提供了坚实的理论框架。通过利用这些工具,研究人员和从业者可以表征经典和量子相关性、优化量子态并设计高效的量子算法和协议。本文还讨论了实现方面,例如 SDP 求解器和建模工具,从而能够在量子信息处理中有效使用优化技术。本文提出的见解和方法已被证明有助于推动量子信息领域的发展,促进新型通信协议、自测试方法的开发以及对量子纠缠的更深入了解。